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Control of Complex Systems Initiative:

From Big Data to Big Controls

CCSI: A five year, multi-million dollar internal research investment to build
and demonstrate development and delivery of best of class solutions for
problems in the control of complex systems.

Challenges for Big Controls:

» Large numbers of sensing and/or
control end points

» Multiple scales of operation usually
with multiple time scales

» Node heterogeneity

» Pervasive computing/autonomous
nodes

Control solutions will be: 0,0
Scalable, deployable, robust, resilient, °4TA 10 B\® G
and adoptable.




Significant Challenges Facing the Grid

and in tension with each other
» Maintain and increase reliability
» Integrate renewables & low-carbon sources

» Potential electrification of vehicle transportation
(& other end uses as electricity becomes the preferred “fuel”)

» Increase asset utilization, reduce capacity for peak loads

» While keeping costs & revenues as low as possible

Smart grid is the most promising approach to
addressing these challenges simultaneously

» Much of smart grid’s promise lies in distributed assets: Demand
response, distributed storage & generation, electric vehicles,
smart inverters



Future Control Architecture of the Grid

Designing a novel control architecture for the power
grid needs a significant number of considerations,

e.g.:
» Laws of electro-physics must be observed
Current/future stakeholder boundaries must be respected

>
» Architecture must be deployable in a modular, incremental fashion
>

For reasons of robustness, resilience & flexibility, the control
architecture must be layered

» Considering the huge number of assets, lowest layer must be a
distributed control architecture

Transactive Controls is a very promising approach for
such a distributed control architecture



Transactive Controls / Transactive Energy

Refers to techniques for managing the generation,
consumption or flow of electricity within a power
system, using economic or market-based constructs,

while respecting grid reliability constraints.

The term “transactive” comes from considering that
decisions are made based on a value. These decisions
may be analogous to, or literally, economic
transactions.

Transactive Energy Workshop Proceedings 2012, prepared by the GridWise® Architecture Councik
March 2012, PNNL-SA-90082 (http://www.gridwiseac.org/historical/tew2012/tew2012.aspx)

Pacific Northwest
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What Problems or Issues Is
Transactive Control and Coordination
Designed to Address?

o
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Principal Challenges Addressed by TC2

Principal Challenge

» Centralized optimization is
unworkable

m for such large numbers of
controllable assets, e.g. ~10° for
full demand response participation

» Interoperability

» Privacy & security

m due to sensitivity of the data
required by centralized techniques

» Scalability

Approach

» Distributed approach with self-organizing, self-
optimizing properties of market-like constructs

» Simple information protocol, common between
all nodes at all levels of system:

guantity, price or value, & time

» Minimizes risks & sensitivities by limiting content
of data exchange to simple transactions

» Self-similar at all scales in the grid

» Common paradigm for control & communication
among nodes of all types

» Ratio of parent to child nodes limited to ~103

=
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Principal Challenges Addressed by TC2 (cont.)

Principal Challenge

» Level playing field for all assets of
all types:

m existing infrastructure & new
distributed assets

» Maintain customer autonomy
m “Act locally but think globally ...”

» Achieving multiple objectives with
assets essential for them to be
cost effective

» Stability & controllability

Approach

» Market-like construct provides equal
opportunity for all assets

» Selects lowest cost, most willing assets to “get
the job done”

» Incentive-based construct maintains free will

m customers & 3rd-parties fully control their assets
m yet collaborate (and get paid for it)

» Allows (but does not require) distribution utility
to act as natural aggregator

m address local constraints while representing
the resource to the bulk grid

» Feedback provides predictable, smooth, stable
response from distributed assets

» Creates what is effectively closed loop control
needed by grid operators

=
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PNNL Transactive Energy Approach:
Transactive Control & Coordination
(TC2)

o
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Transactive Control from Interaction of Price

Discovery & Customer Bidding Algorithms

Precise, stable control of congested grid nodes derived
from customer price-responsive bidding algorithm
Interacting with price discovery mechanism (e.g., a market)

Transactive Cooling Real-time Market
Thermostat Clears Customer Bids
More More

Comfort Savmgs
— Price
' ($/MWh)

Demand Curve

/ (customer bids)

Node Supply
< Curve

P, | B Rated Node
Capacity

Load
> (MW)

chear

Indoor
Temperature Pacific Northwest
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Hierarchical Network of Transactive Nodes

Parallels the Grid Infrastructure

Node: point in the grid where flow Node Functionality:
of power needs to be managed » “Contract” for power it
needs from the nodes

- supplying it
» “Offer” power to the nodes

It supplies

» Resolve price (or cost) &
guantity through a price
discovery process

® market clearing, for
example

» Implement internal price-
responsive controls

o
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Properties of Transactive Nodes

» Use local conditions & global information to make control
decisions for its own operation

» Indicate their response to the network node(s) serving them
m to an incentive signal from the node(s) serving them

m as a feedback signal forecasting their projected net flow of electricity
(production, delivery, or consumption)

» Setting incentive signal for nodes serves to obtain precise
response from them, based on their feedback signals

» Responsiveness is voluntary (set by the node owner)

» Response is typically automated (and reflected in
the feedback signal) *:5’/

Pacific Northwest
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Links All Values/Benefits in Multi-Objective Control

Long-term objective for TC2 is to
simultaneously achieve combined benefits

» Reduce peak loads (minimize new capacity, maximize
asset utilization) — generation, transmission, & distribution

» Minimize wholesale prices/production costs
» Reduce transmission congestion costs

» Provide stabilizing services on dynamically-constrained
transmission lines to free up capacity for renewables

» Provide ancillary services, ramping, & balancing
(especially in light of renewables)

» Managing distribution voltages in light of rapid
fluctuations in rooftop solar PV system output \:5;/

Pacific Northwest
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Transactive Cooling Thermostat Generates

Demand Bid based on Customer Settings

= User's comfort/savings setting implies limits around normal setpoint (T 4eireq). t€MP. elasticity (k)
= Current temperature used to generate bid price at which AC will “run”
= AMI history can be used to estimate bid quantity (AC power)

» Market sorts bids & quantities into demand curve, clears market returns clearing price

» Thermostat adjusts setpoint to reflect clearing price & temperature elasticity
o Price is normalized: P* = [P —-mean(P)] / o(P) /(

I:)clear _______________________ 1
o e
2 More More
| -
o Pan """"""""""""""""""""""" Comfort € * Savings

Translates to: K, Tra Trin

|

|

|

|

|

|

|

|

|

|

|

\"4 > \ﬁ/

Tset Tmax Pacific Northwest
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RTP Double Auction Market — Uncongested

P, Price ($/MWh)

lear = Ppase

A/

Unresponsive
Loads

Responsive
Loads

Retail RTP based
on wholesale
real-time LMP
(Base RTP)

]

\ 2
N
\%

Demand Curve:
sorted (P, Q)
bids from trans-
active customers

Market clears
at intersection :

of supply & :
demand curves

» Market clears
every 5-min
(to ~match AC
load cycle)

» When
uncongested:

m Quantity (chear)
varies with

demand curve

a

.

Feeder

Supply
Curve

|

B Price (Pgeq) IS
constant, equal

l

Varies every
5-min

to Base RTP

Feeder

/ Capacity

Qmin chear Qmax

Q, Load (MW)

>
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P, Price ($/MWh)

RTP Double Auction Market — Congested

clear

P base

Unresponsive Responsive

Loads Loads

A/

A\

A

3

Demand Curve:
sorted (P, Q)
bids from trans-

Retail RTP based active customers

on wholesale 7
real-time LMP Feeder
(Base RTP) Supply
Curve

Market clears
at intersection

of supply &
demand curves

N =
7 .
.

» \When
constrained;:

m Quantity (chear)
IS constant at

rated feeder
capacity

B Price (Pgear)
varies to keep
load at rated
capacity

Qmin
Q, Load (MW)
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What about the Congestion Surplus?

customers . .
providing » Congestion surplus is extra
A ' capacity revenue coIIec_ted from |
<« customers during constrained
’ conditions (i.. P s > Ppase)
_ : » Each customer’s surplus
congestion congesglon returned as billing rebate to
g rebate incentive maintain revenue neutrality
S : o o
@ p l » A PTR-like* incentive is also
| N N offered during congestion,
= based on customer’s bid
- histor
o y * peak time rebate
Ppose R s S—
=1 |« P e
5 Qi
Qiotal ; o i Feeder
§/Capacity

: > \ﬁ/
chear
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Fully Engaging Demand.:
What We’ve Learned from the

Olympic Peninsula Demonstration

Pacific Northwest
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Olympic Peninsula Demonstration

IBM
Invensys Market
"-l.'- =
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I I I II Sciences Lab 0.2 MWDR
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Controls Q

Controls
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Pacific Northwest
NATIONAL LABORATORY

B e
C B &
. U
/

19




Olympic Peninsula Demo: Key Findings (1)

Customers can be recruited, retained, and will respond to
dynamic pricing schemes if they are offered:

» Opportunity for significant savings (~10% was suggested)

\ 4

A “no-lose” proposition compared to a fixed rate

» Control over how much they choose to respond, with which end uses,
and a 24-hour override

m prevents fatigue: reduced participation if called upon too often
» Technology that automates their desired level of response

» A simple, intuitive, semantic interface to automate their response

More , More Translates to control parameters:
Comfort Savings
l K, Thaxr Tmin (s€e Virtual Thermostat)

Pacific Northwest
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Olympic Peninsula Demo: Key Findings (2)

Significant demand response was obtained:

>
>

15% reduction of peak load

Up to 50% reduction in total load for several days in a row during
shoulder periods

Response to wholesale prices + transmission congestion + distribution
congestion

Able to cap net demand at an arbitrary level to manage local distribution
constraint

Short-term response capability could provide regulation, other ancillary
services adds significant value at very low impact and low cost)

Same signals integrated commercial & institutional loads, distributed
resources (backup generators)

Pacific Northwest
MNATIONAL LABORATORY
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Load Shifting Results for RTP Customers
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=
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Diversified energy demand [kWh/h]
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o
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Cleared energy (14.2 kWh/day, 0.9 peak kWh/h)

Counterfactual energy (12.2 kWh/day, 0.8 peak kWh/h)

[en]

|
12 15 18 21
Hour of day

»  Winter peak load

>

shifted by pre-heating

Resulting new peak
load at 3 AM is non-
coincident with system
peak at 7 AM

lllustrates key finding
that a portfolio of
contract types may be
optimal —i.e., we don't
want to just create a
new peak

-
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Securlty Constralned Optlmal Power Flow W|th
Distributionally Robust Chance Constraints

Line Roald, Frauke Oldewurtel, Bart Van Parys, G6ran Andersson
Santa Fe, 16.01.2015

Grid Science Winter School, Santa Fe Line Roald | 21.01.2015 | 1




PROBLEM: Uncertain power injections — uncertain power flows

Probability Forecast based on most Probability o
0.0t .. probable realization A Thermal imit
0.06
0.01 Low N
0.04 probability
of overload
0.005 0.02 Vs
—9L50 100 50 0 50 100 150 260 0 360 380 400
Forecast Error Line Power Flow
Uncertainty from: 4 _
- Renewables and load GOAL: Keep system

- Intra-day trading operation N-1 secure,
Not always normally distributed!

despite uncertainty!

\_ J

Grid Science Winter School, Santa Fe Line Roald | | 2




Chance constrained optimal power flow

= Formulation based on DC power flow
= Chance constraint reflects probability of constraint violation

Post-contingency line flow constraint:

Scheduled power flow Change due to Desired
+ change due to outage fluctuations w confidence level

\ ¥ v

P (Al PLy+ D' o < PIE) 2 1-¢

Grid Science Winter School, Santa Fe Line Roald | 21.01.2015 | 3



Analytical Reformulation of Chance Constraints

P (Al Phy+ D! 0 S PP ) >1—¢

deterministic constraint I stochastic tightening

A
| | :

WPy < PIG — (1

|

)EZH — Dy

Different (unknown) distributions of w lead to different expressions
for f71(1 — &)!

= |f multivariate normal (or elliptical): Exact reformulation
= |f only partially known: Probabilistic inequalties

Grid Science Winter School, Santa Fe Line Roald | 21.01.2015 | 4



Value of f~1(1 — ¢)
N w ~ a

—

o
o -

0.2 04 0.6 0.8
Confidence level 1 — ¢

Grid Science Winter School, Santa Fe

1

\ 22

(1,HH

2

Exact reformulation:

e Normal distribution
t distribution

Distributionally robust:

- OYmmetric, unimodal

with known u & X

Unimodal with known u & X
@@= Chebyshev (known u & X)

Line Roald | 21.01.2015 | 5



: 1 :

W) Py S Pl — (1 )22 (LM

2

More information about
the distribution leads

~ 6 to Iower | f'_'l' (1 _ e) I """"" [ Exact reformulation:
| o . . . - e Normal distribution
S t distribution
=
8 Distributionally robust:
S2 - OYmmetric, unimodal
c>5 1 with known u & X
Unimodal with known u & X
@@= Chebyshev (known u & X)

ok ; : —=T" X i
0 0.2 0.4 0.6 0.8 1
Confidence level 1 — ¢

Grid Science Winter School, Santa Fe Line Roald | 21.01.2015 | 6



Case study: IEEE RTS 96 with uncertain in-feeds

e  Two uncertain in-feeds (bus 8,15) ¢ &=0.075

e u,X basedon samples of « Constant D(il’_) (LP)
historical data from APG «  Different assumptions on w
 Not normally distributed! @ . 2 @
w» 300¢ v |
@ 20 O - ‘g)
[ { | | | [—
'? 100} * &// mlﬁzol7
o o Lo L
B o . f_ i N :/:_’
§ ook o Nv g —t 24 T T
5 x ; : L R o
w300 : : ] T —
-100 0 100 200 3 ° 10 6
Forecast error bus 8 [MW] :4—/ ‘_\SL gy

Grid Science Winter School, Santa Fe @ 1 @ l 2 @ 7 21.01.2015 | 7



Case study: IEEE RTS 96 with uncertain in-feeds

Empirical violation probability

c —
© — 10 —6— Max. Empirical |.
2 .
< G\ *-*©-- Mean Empirical
Q2 > Q.
— 5 ".. :
S8 °
= Q ..
a3 9
c a
L 0 ;
Normal Unimodal Chebyshev

Uncertainty assumption

Relative generation cost

o' .12
*g 2 10 o
o é

c 08
= o .06
% e
x © 04

S, 02 .

Normal Unimodal Chebyshev

Uncertainty assumption

Grid Science Winter School, Santa Fe

Normal distribution:
«good guess»,
no probabilistic guarantees

Chebyshev:
probabilistic guarantees,
very conservative

Unimodal:
probabilistic guarantees,
less conservative

Line Roald | 21.01.2015 | 8



Summary

= Analytic reformulation for separate chance constraints can
be applied to non-normal distributions

= Assuming unimodality might be a good way to provide
probabilistic guarantees, without being too conservative

= Next: German network with more uncertainty sources

Grid Science Winter School, Santa Fe Line Roald | 21.01.2015 | 9



Thank youl!

m Power Systems Laboratory
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Line Roald
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Motivation
Network model
Load-side frequency control

Simulations

Main references:
Zhao, Topcu, Li, Low, TAC 2014
Mallada, Zhao, Low, Allerton 2014
Zhao, Low, CDC 2014



&7 Why frequency regulation

Control signal to balance supply & demand

Andersson’s talk in am

secondary economic
freq control dispatch
primary
freq control

sec min 5 min 60 min




Why frequency regulation

Traditionally done on generator-side

B Frequency control: Lu and Sun (1989), Qu et al
(1992), Jiang et al (1997), Wang et al (1998),
Guo et al (2000), Siljak et al (2002)

B Stability analysis: Bergen and Hill (1981), Hill
and Bergen (1982), Arapostathis et al (1982),
Tsolas et al (1985), Tan et al (1995), ...

B Recent analysis: Andreasson et al (2013), Zhang
and Papachristodoulou (2013), Li et al (2014), Burger
et al (2014), You and Chen (2014), Simpson-Porco et
al (2013), Dorfler et al (2014), Zhao et al (2014)



&3 Why load-side participation

Ubiquitous continuous load-side control can
supplement generator-side control

faster (no/low inertia)

no extra waste or emission

more reliable (large #)

better localize disturbances

reducing generator-side control capacity

secondary economic
freq control dispatch

primary
freq control

sec min 5 min 60 min




What is the potential

Operating o Resi :
. idential | n
Reserve Residential esidential load accounts

13% (GFA) ——  for ~1/3 of peak demand
18% « 61% residential appliances

Commercial - -
9% are Grid Friendly
Residential
(non-GFA)
12%
Industrial Freezer
28% M Clothes Dryers
&
Cooking
3%
US:

operating reserve: 13% of peak
total GFA capacity: 18%

Lu & Hammerstrom (2006), PNNL
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Input signal
(Tstat setpoint, °

Fig. 7. Load control example for balancing variability from
intermittent renewable generators, where the end-use function—in
this case, thermostat setpoint—is used as the input signal.

power, MW

—_
(0]
o

—t ek

)
no
o
o
&)

N
o

19.95}
199+
19.85¢

wind signal
demand

<. 4 6

« 60,000 AC

« avg demand ~ 140 MW
« wind var: +- 40MW

« temp var: 0.15 degC

time (hr)

Can household Grid Friendly
appliances follow its own PV
production?

Dynamically adjust
thermostat setpoint

Callaway, Hiskens (2011)
Callaway (2009)
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How to design load-side frequency control ?

How does it interact with generator-side
control ?



Literature: load-side control

Original idea
B Schweppe et al 1979, 1980
Small scale trials around the world

B D.Hammerstrom et al 2007, UK Market Transform
Programme 2008

Numerical studies

B Trudnowski et al 2006, Lu and Hammerstrom 2006,
Short et al 2007, Donnelly et al 2010, Brooks et al

2010, Callaway and I. A. Hiskens, 2011, Molina-Garcia
et al 2011

Analytical work

B Zhao etal (2012/2014), Mallada and Low (2014),
Mallada et al (2014)

B Simpson-Porco et al 2013, You and Chen 2014, Zhang
and Papachristodoulou (2014), Zhao, et al (2014)



=% Outline

Network model

Main references:
Zhao, Topcu, Li, Low, TAC 2014
Mallada, Zhao, Low, Allerton 2014
Zhao, Low, CDC 2014



Network model j

branch power
P

ij
generation

I)im

Will include generator-side
control later

d. +c;’l.

loads:
controllable + freg-sensitive

[ : region/control area/balancing authority



Network model

M@, =P"-d - EC P,

Generator bus: M, >0
Load bus: M =0

Damping/uncontr loads: d; = D,
Controllable loads: d.




* swing dynamics
« all variables are deviations
from nominal
* nonlinear : Mallada, Zhao, Dorfler




/Ml.a')l =P"-d -d,-YC,P, B
&Pij =bl.j(a)l.—a)j) v i%j/

Suppose the system is in steady state

;=0 P,=0 o =0

and suddenly ...



Frequency control
Given: disturbance in gens/loads

Current: adapt remaining generators P

B re-balance power

B restore nominal freq and inter-area flows
(zero ACE)

Our goal: adapt controllable loads d,
B re-balance power
B restore nominal freq and inter-area flows
B ... while minimizing disutility of load control
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How to design load-side frequency control ?

How does it interact with generator-side
control ?

Limitations
* Modeling assumptions
* Preliminary design and analysis
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Load-side frequency control

Main references:
Zhao, Topcu, Li, Low, TAC 2014
Mallada, Zhao, Low, Allerton 2014
Zhao, Low, CDC 2014



&7 Frequency control
e A N
M. = })lm _di _di _Eciepe

o= e
KI.)zJ':bU(P)i_wJ\ v i%j/

current new
approach approach




Load-side controller design

M.d)i =Pl-m—di—£l;i_zciepe

P.=bl.j(a).—a)].) Vi—j

ij I

How to design feedback control law

d, = F(o(1),P(t))



Load-side controller design

P.=bl.j(a)l.—a)].) Vi—j

Control goals
Zhao, Topeu, Li, Low M Rebalance power
TAC2014  m stabilize frequency
Mallada, Zhao, Low M Restore nominal frequency
Allerton, 2014 .
B Restore scheduled inter-area flows



Load-side controller design

Desirable properties of d. = E.(a)(t),P(t))
B simple, scalable
B decentralized/distributed



&3 Motivation: reverse engineering

Dj interpreted power flows as

solution of an optimization problem
B PF equations = stationarity condition

We interpret swing dynamics as

algorithm for an optimization problem
B eq pt of swing equations = optimal sol
B dynamics = primal-dual algorithm

Other examples: Internet congestion control (2000s), ...
What are the advantages of this design approach?



P.=bl.j(a)l.—a)j) Vi—j

primal-dual algorithm

Equilibrium point is unique optimal of:

d’
mn o 2a5

i

s.t.  P"-d,-YC,P;=0 Vi
J demand = supply



Load-side controller design

Proposed approach: forward engineering
B formalize control goals into OLC objective
B derive local control as distributed solution
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Load-side frequency control
B Primary control  Zhaoetal SGC2012, Zhao et al TAC2014
B Secondary control
B Interaction with generator-side control



&7 Optimal load control (OLC)

l l

| pe
mp S|y

s.t. P"=(d+d,)- Y C,P,=0 Vi
T € demand = supply

disturbances

controllable
loads



s.t. v.=v. Vi~

decouples areas/buses i
®,(v,) = min Lagrangian (d,d,,v,)
d., d
c,(d;)+ Lc;fl.z—vl.(a’ﬁ c;’i—Pl.m)
2D,

primal objective constraint penalty



Decoupled dual (DOLC)
max E@i(vi)

L4

s.t.  v,=v, Vi~

Lemma

A unique optimal v =(v',...,v ) is attained

There is no duality gap (assuming Slater’s
condition)

B = solve DOLC and recover optimal solution
to primal (OLC)



#U%  system dynamics + load control
= primal dual alg

swing dynamics

W, = -ML d.(t)+ Dw,(1)- P" + Epij(r)- Epﬁ(t)
] I—J j—i
hi=hloin-o o)~ \
implicit
load control

di(f) = [c;_l (a)l(t))]j < active control

=1




&7 Control architecture

d Power Network Dynamics
—>
(w, P)
di () <€




&% Load-side primary control works

Theorem
Starting from any (d(O), 4(0), w(0), P(O))

system trajectory (d(t), d(1), o), P(f))

A

8 * 3 %)
converges to (d , d, CU,P/ as — o

m (d*, d*) is unique optimal of OCL
B W s unique optimal for dual
completely decentralized

frequency deviations contain right info for local
decisions that are globally optimal



&% Implications

B Freq deviations contains right info on
global power imbalance for local decision
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B Freq deviations contains right info on
global power imbalance for local decision

B Decentralized load participation in
primary freq control is stable



Implications

B Freq deviations contains right info on
global power imbalance for local decision

B Decentralized load participation in
primary freq control is stable

= a)*: Lagrange multiplier of OLC
info on power imbalance



Implications

B Freq deviations contains right info on
global power imbalance for local decision

B Decentralized load participation in
primary freq control is stable

= a)*: Lagrange multiplier of OLC
info on power imbalance

m P Lagrange multiplier of DOLC
info on freq asynchronism



&3 Recap: control goals

Yes B Rebalance power

Yes M Stabilize frequencies

No B Restore nominal frequency (w #O)
No M Restore scheduled inter-area flows

Proposed approach: forward engineering
B formalize control goals into OLC objective
B derive local control as distributed solution
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Load-side frequency control

- Mallada, Low, IFAC 2014
B Secondary control Mallada et al, Allerton 2014

B Interaction with generator-side control



&% Recall: OLC for primary control

] I A
c{%’lpn E(Ci (dz) + Ediz)

i

S. t. P" —(d+ 5’) =CP demand = supply



&7 OLC for secondary control

. | R
min E(Cf<df>+ Edf)

i

S. t. P" —(d+ 5’) =CP demand = supply

key idea: “virtual flows”

BC'v

in steady state: virtual = real flows

BC'v=P



&7 OLC for secondary control

: |
mp 3ol 55

i

S. t. P" —(d+ 5’) =CP demand = supply

P" - d = CBC'v restore nominal freq

in steady state: virtual = real flows

BC'v=P



&7 OLC for secondary control

. 1
min E( (d)+ Ed)

i

S. t. P" —(d+ d) =CP demand = supply
P"— d = CBC"v restore nominal freq
é’ BC'v A restore inter-area flow
P = BC < }_) respect line limit

in steady state: virtual = real flows

BC'v=P



&7 Recall: primary control

swing dynamics:

W, = —ﬁ(a’i(t) +D.w.(1)- P" + E C.P(1)

l

eckE

Pij = bij (a)i(t) —; (f)) < \ implicit

active

load control:  d,(t):= [cl'.‘l(a)i(t))]j - control

d | Power Network Dynamics

(w, P)
. |
() '




Control architecture

d Power Network Dynamics
—>
(w, P)
dz() <€
0
d Dynamic Load Control

(A, m,p7, p7,0)




&) Secondary frequency control

load control: d,() :—[ How, () + A, (t))]

I~ &y

computation & communication:

primal var: v =x" <LB)\ — CDBOTW — CDB(,O+ — :0_)>

dual vars:




#% Secondary control works

Theorem

starting from any initial point, system
trajectory converges s. t.

O (d*, c;’*,P*,v*) is unique optimal of OLC

B nominal frequency is restored w =0

A

M A *
B inter-area flows are restored CP =P

B line limits are respected P<P <P



&3 Recap: control goals

Yes B Rebalance power

Yes M Resynchronize/stabilize frequency
Zhao, et al TAC2014
Yes M Restore nominal frequency (w* ::O)

Yes M Restore scheduled inter-area flows
Mallada, et al Allerton2014

Secondary control restores nominal
frequency but requires local communication
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Load-side frequency control
L]
[]

B Interaction with generator-side control
Zhao and Low, CDC2014



&% Generator-side control

New model: nonlinear PF, with generator control

0, = w,
M@, = - Do, + Y C.P,
P, =b,sin(6,-0,) Vi

Recall model: linearized PF, no generator control
Mo, = -Dw, {Rm _di]_ECiePe

P.=bl.].(a)l.—a)j) Vi—j

Y



#% Generator-side control

New model: nonlinear PF, with generator control
0, = o,

Mo, = _Diwi-l_pi_zciepe

P.=bl.].sin(l9i—0j) Vi—j

g

generator bus: real power injection
load bus: controllable load



&% Generator-side control

New model: nonlinear PF, with generator control

Hi = W;

Mo, = _Diwi-l_pi_zciepe

B.j=bl.jsin(l9i—6j) Vi—j
: 1
generator buses: p; = _r_(pi +a,)
primary control p;(t) = p; (w,(1)) 1bl
e.g. freq droop p; (w,)=-pBw, %= _T(ai T D )



Load-side (primary) control

d Power Network Dynamics
—>
(H, w, p, a)
W
0

d() X
o

load-side control

d(1):=|c” (w,.(r))]z



Load-side primary control works

Theorem

Every closed-loop equilibrium solves
OLC and its dual

P (w)-pf (o)

%
near w for some L, <D,

%k
sLl.‘a)—a)

Suppose

Any closed-loop equilibrium is (locally)
asymptotically stable provided

7T
< —
2

)




Outline

Simulations

Main references:
Zhao, Topcu, Li, Low, TAC 2014
Mallada, Zhao, Low, Allerton 2014
Zhao, Low, CDC 2014



=% Simulations

Dynamic simulation of IEEE 39-bus system

Power System Toolbox (RPI)
Detailed generation model
Exciter model, power system
stabilizer model

Nonzero resistance lines

Fig. 2: IEEE 39 bus system: New England
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Secondary control .

R
) area 2

Fig. 2: IEEE 39 bus system: New England

swing dynamics with OLC
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Conclusion

Forward-engineering design facilitates
B explicit control goals
B distributed algorihtms
B stability analysis

Load-side frequency regulation

B primary & secondary control works
B helps generator-side control
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...complex systems are counterintuitive.
That is, they give indications that suggest
corrective action which will often be
ineffective or even adverse in its results.

Forrester, Jay Wright



Power System: A Traditional View

Bulk Power System Distribution System

Two separate systems



The Line Between Transmission and Distribution is
Blurring

Increase in Distributed Generation (DG)

Introduction of Virtual Power Plants

(VPP)

Demand Resources (DR) playing a
greater role

Result: traditional power system becomes more “open” and
vulnerable to disturbances and attacks



The Smart Grid

Bulk Power System Distribution System

Common policies, reliability and control standards




Power System Architecture Evolution (before 1966)




Power System Architecture Evolution (creation
of pools)




Power System Architecture Evolution (markets)




Power System Architecture Evolution
(coordinated markets)




Power System Architecture Evolution (what’s next?)

uGrid

( PHEV Aggregators

Virtual Power Plants
Demand Aggregators

10



Power System Control Evolution (what’s next?)

Transmission Transmission

Transmission N K
- (- Y

]

Maybe this?

11



The Need for Greater Flexibility

New Planning and Protection Concepts New Operation and Control Strategies

* Rapid response to different disturbances « Risk-based operation
* Greater reliance on corrective actions
* System integrity protection

* Power quality standards

* System survivability * Transmission switching

Online constraints calculation

* Wide-area monitoring

e Adaptive islanding

New Transmission Technologies Dynamic and adaptive line ratings

, Adaptive and distributed control
* Power electronics

Energy storage
Superconductors robust and stochastic optimization

HVDC and HVDC-lite
Nanotechnologies

New optimization algorithms:

12



Reliability

NERC defines reliability as:
Adequacy + Operating Reliability?

Challenges to this conventional reliability concept:
— Distributed resources and microgrids
— System is unbounded — operator cannot completely control perimeter
— Contingency definition is nontrivial
— Evolving contingency definitions
— Binary contingency definition = probability distributions
— Greater effect of computer & communication contingencies
— Ambiguous definition of “loss-of-load” events with responsive loads

— Non-uniform quality of service and reliability needs

[1] NERC, Definition of “Adequate Level of Reliability,” 2007

13



OE-417 Analysis Overview

 About the data: who reports and what is reported

* Types and frequency of events

* Problems with the data

e Evaluation of historical reliability indices (2002-2011)

e Power law distribution of events

14



OE-417 Data — Who Reports?

1.
2.

3.

Electric Utilities
Balancing Authorities
Reliability Coordinators
Generating entities

Local utilities in AK, HI, PR

15



OE-417 criteria for reporting incidents:

1.

Physical, cyber, or communications attack

Complete operational failure of transmission and/or distribution
Electrical system islanding

Uncontrolled loss of 300 MW or more load for 15 or more minutes
Load shedding of 100 MW or more

System-wide voltage reductions of 3% or more

Public appeals to reduce the use of electricity

16



Number of Events

Event duration and size of losses

Histogram of Event Durations Histogram of Load Losses Histogram of Events by the Number of Customers Lost
30 L L L L L T 60 n L L L L ! 90 L L L T S L
80 b
70 b
60 -~ b
4] )
< €
g g 50+~ -
w w
ks ks
g g
E € 40 N
> >
Z pa
Loss of large
30[-customers (e.g. i
PG&E)
20
10
0 - - 0
0.0001 0.001 0.01 0.1 1 10 100 1 10 100 le3 led 1e5 1 10 100 1e3 1ed4 1e5 1e6 1e7
Event Duration (days) Load Loss (MW) Number of Customers
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Problems with the data

* Event losses are reported either in MW or number of

customers, usually not both
— Limits the useful portion of the data set to about 50%

* Event duration is provided, but the duration of the loss of load
is not provided — this inhibits the evaluation of energy-related
indices

18



Magnitude of Events (sum

*Note: Since the duration of the event may not correspond to the duration of the loss-of-load, all results regarding unserved energy are inconclusive

Number of Events

of LOL times duration)

Breakdown of Events by NERC Region and Incident Type

Number of Events by Event Type

Number of Events

300

250

200

150

100

Cumulative MWh

50

Number of Events by NERC Region

RFC WECC SERC FRCC NPCC TRE

3 3 T 3 3 3 T

SPP  MRO

MWh Lost by NERC Region

RFC

3 3 T 3 3 3 T

TRE SERC NPCC WECC FRCC MRO SPP

Weather or Natural Disaster

Inadequate Electric Resources to Serve Load
Other

Equipment (non-Generator) Failure

Electrical System Separation - Islanding
Fuel Supply Deficiency

Generator or Plant Trip/Failure

Vandalism: Actual or Suspected

2003 Blackout

Cyber/Computer/Telecom Attack: Actual or Suspected

0 100 200 300 400 500
Number of Events

MWh Lost by Event Type

Weather or Natural Disaster

2003 Blackout

Other

Equipment (non-Generator) Failure
Inadequate Electric Resources to Serve Load
Fuel Supply Deficiency

Electrical System Separation - Islanding
Generator or Plant Trip/Failure

Vandalism: Actual or Suspected

Cyber/Computer/Telecom Attack: Actual or Suspected

r r r

0 5 10 15
Cumulative MWh

x 10°
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U.S. Power Disturbances Since 2002: By NERC Region and Incident Type

Event Data from DOE OE-417: “Electric Emergency Incident and Disturbance Report”
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Many System Disturbances are Not Explicitly Modeled in Traditional Reliability Theory

Event Data from DOE OE-417: “Electric Emergency Incident and Disturbance Report”

[ B K
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Calculated reliability indices using events categorized as “Inadequate Electric Resources to Serve Load”

only.

Average
Loss-of-Load

1 Dayin 10 Years
_— >

Average Energy
Not Served:

*Note: Since the duration of
the event may not
correspond to the duration
of the loss-of-load, all
results regarding unserved
energy are inconclusive
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Loss-of-Load by NERC region and year
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Calculated reliability indices using events categorized as “Inadequate Electric Resources to Serve Load,”

Equipment (non-Generator) Failure,” or “Generator or Plant Trip/failure.”

) Loss-of-Load by NERC region and year
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Extreme Events appear to follow a power law distribution

Probability that loss of load is larger than the indicated value
LLLE T 1 1 LLLLE T 1 LLLLLLE 1 1 LLLLLLE

* Data: All continental U.S. i
events with MW losses of load 1
reported from mid-2003
through mid-2011 through
OE-417
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T

[any
o,
[N

 The tail appears to follow a
power law distribution

LA R BT B O

T

P(Loss of load > x)

«  Confirms the findings of a 10"

number of studies that there

is non-negligible probability in

the tails of the distribution.

The distribution in heavy-

tailed 10
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Conclusions

* The available historical data may not be comprehensive
enough to accurately evaluate all reliability indices

* Traditional reliability indices cover the effects of a fraction of
total events — this may suggest expanding the theory

 Major power system events may follow a power law
distribution

25



Reliability Standards

 Are we compliant?

— Not enough statistics and evidence to answer

e What do our standards mean?

 What happens if they are relaxed?

New system challenges suggest expanding the
framework of traditional reliability theory

30
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* What would be the adequacy standard for the Backbone System?
* Could that be decided by the market mechanism?
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Survivability

e New technologies will lead to emergent behavior — not
necessarily positive

— Self-Organized Criticality: Blackout cannot be avoided by tightening the
current reliability criteria

e Concepts of survivability, resilience and robustness

— Survivability is an emergent property of a system — desired system-wide
properties “emerge” from local actions and distributed cooperation

— The realization of a survivable system will rely on advanced detection,
control and coordination techniques

— How do you effectively model, simulate, and visualize survivability?

28



Survivability

}\/_/ J}E/_/ J}E/_/ ‘;\/_/

T S oo

Time between disturbances Planning — Evolve and Adapt Over Time
Actions Metrics
* Add energy storage * Mean time between
* Incorporate more DR failures
* Allow VPP and DG to be ¢ System complexity
added to the system * Self-organization
f(t) 4 * Transmission expansion ¢ Autonomous
\ * Place corrective and behavior
X i Rebound time | protection devices * Survivability

df

Respond to Disturbances

i
1
1
— 1
1
Disturbance dt ! Actions Metrics
maanitude | e Utilize DR * Phase angle
% i . * Dispatch reserves differences
Aceiirni ions etrics ! * Activate relays ¢ Cascading
X * Public Appeals robabilit
* Security-constrained © Reserve margin X . Shed Ian::Ip . i/lean timz -
economic dispatch ¢ Area Control Error ----= . X renair
e QOutage coordination * Frequency | : | i
* Voltage control * Voltage J‘ ' ‘i =
* Frequency control ¢ Line loading _ N - Time
« Stability urbance Recovery

duration time
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Survivability

* The ability of the system to continuously provide energy to
the customers in the presence of a failure or attack on the
system

Attack

Resist

Recognize

© 2000, 2001 by Carnegie Mellon University
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Survivability

* Four properties of survivability:

Resistance to attack — system design, short term planning
Recognition of intrusion — local and wide-area monitoring
Recovery of essential or full service after attack — protection,
emergency control, SPS/RAS, WASIP, reconfiguration
Adaptation/evolution to reduce effect of future attacks — cognitive
systems

 Why is it so difficult to define the metrics for survivability?
Rare but high impact events!

31



High Impact Low Frequency Report

 NERC/DOE report June 2010

e Based on the results of the
HILF workshop

http://www.nerc.com/files/HILF.pdf

High-Impact, Low-Frequency
Event Risk to the North American ..o
Bulk Power System

June 2010

www.nerc.com | www.doe.gov
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Survivability Characteristics

Disturbance prevention &
System operation far from
critical points

Ensuring
Quality of Service,
Value-delivery,
& Rapid Recovery

Normal Operation

Endogenous

Disturbances
(e.g. component
failures)

Stability

Reliability

Exogenous

Disturbances
(e.g. weather, physical
attacks, etc.)

Robustness

Resilience

o

~
Survivability

* Evolution &
Adaptation

* Improved
reliability, stability,
robustness, and
resilience

* New functionality

* Ensure beneficial
complexity
(Self-organization,
autonomous
behavior)

* Cooperation versus
coordination

J

Survivability and Resilience: early detection and fast recovery
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Survivability Metrics

Arresting Period

Rebound Period

Recovery Period

F

Y

Hz *
60.00 —
559.98 -
% ll
% =
z i
59.90 /‘

©NERC

dfib

| |
10 20
Seconds

1L
77

30

dt

S

AT

\ 4

l |
20 30

Minutes

During a disturbance, the rate of change of frequency and
the time to recover may be used to measure survivability
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Survivability Metrics (cont’d)

3
:

Power Transferred: P

Stable Equilibria Unstable Equilibria

The further apart the
equilibria are, the more
resilient the system will
be to sudden changes in
phase angle

T

Phase Difference: 6 = 61 — 09
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Flexibility (Motivation)

* The variability of renewable resources requires the system to
have the ability to react to a sudden change of system
condition and accommodate new state within acceptable time
and cost tolerance.

 The importance of flexibility is well recognized, but there is
lack of a unified framework for defining and evaluating
flexibility.

* Asingle flexibility framework can
— Serve as a basis for comparison of different power system designs.
— Enable the integration of flexibility in the design of power systems

41



Literature Review

In finance, flexibility can be reflected by liquidity, i.e. the
degree to which assets can be converted to capital.

In manufacturing system, flexibility represents the capability
of manufacturing system to modify manufacturing resources
to produce different products efficiently maintaining an
acceptable quality. [Sethi et al, 1992]

In information system, flexibility is the ability of the system to
accommodate a certain amount of variation regarding the
requirements of the supported business process [Applegate et
al, 1999]
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Literature Review: Flexibility in Power System

 Aflexible plan is the one that enables the utility to quickly and inexpensively
change the system’s configuration or operation in response to varying market and
regulatory conditions. [Hobbs et al, 1994]

* Flexibility is the ability of a system to deploy its resources to respond to changes in
the demand not served by variable generation. [Lannoye et al, 2011]
— They suggest reliability criteria to assess flexibility of a system, similar to the LOLE for
capacity adequacy.

* Flexibility is the potential for capacity to be deployed within a certain timeframe.
[Bouffard et al, 2011]
— They associate flexibility with reserves.

* Flexibility is defined as the attitude of the transmission system to adapt, quickly
and with limited cost, to every change, from the initial planning conditions.
[Capasso et al, 2005]

* Aflexibility index is borrowed from the process control literature, and is associated
with reserves. [Menemenlis et al, 2011]
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Definition of Flexibility

* Flexibility is the ability of a system to respond to a range of
uncertain future states by taking an alternative course of
actions within acceptable cost threshold and time window.

* Four elements are the determinants of flexibility
— Response time window (T )
— Set of corrective actions (@ )
— Range of uncertainty (%)
— Response cost threshold (C )



Target Range of Uncertain State Deviation

* The first step in accounting for flexibility is to define and
clarify the target range of uncertain state deviation.

* Asystem aims to accommodate the uncertainty within the
target range.

* For example, while a system is flexible with respect to the N-1
criterion, it may not be flexible with respect to the N-2
criterion.
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Response Time Window

* Indicate how fast the system is expected to react to
state deviations and restore the system to normal
states.

* Short/Long time windows focus on the short-
term/long-term flexibility of a system.

e A system may show more flexibility in long term
while lacking flexibility in short term.
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Set of Corrective Actions

It represents the corrective actions that can be taken within
the response time window under certain operating
procedure.

Control Actions

Time

AGC [ Economic
Dispatch

Unit
Commitment

Voltage
Control

Interchange
Scheduling

Short-term Outage
Coordination

Long-term Outage
Coordination




Other Related Complementary Concepts

* Flexibility: Ability of the system to be modified to do jobs NOT
originally included in the requirement.

* Robustness: Ability of the system to do its job in unexpected
environments.

* Adaptability: Ability of the system to be modified to do jobs in
expected environments.

* Reliability: Probability that the system will do the job it was
asked to do.
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FLEXIBILITY METRIC

Fledex =

Flexibility metric is defined as the following

The size of the largest range of uncertainty the
system can sustain within the target range

The size of the target range of uncertainty

The largest range of uncertainty
the system can sustain

The largest range of uncertainty
the system can sustain within
the target range

The target range of uncertainty



The Range of Uncertainty

* For each time interval T within the response time window T,
the range of uncertainty is assumed to be a hypercube

% ={s eR"|s®<s <5}
 The target range of uncertainty

%target _ {St cR" |§(LB < s, < §tUB}



Formulation of the Largest Range of
Uncertainty Problem

LB UBa()tl

st. Aa(s)+Bs, <b, Vs e[s?®,s"], Vt=1.. T — Corrective action
C, at(s) Ct, Vs, e[StLB,StUB], vt=1,...,T — Response cost threshold

§° <5 <5 <57, Vt=1..,T — Limitation on the range

Size of the largest range of uncertainty ™ at time t:
s =e'(s° —5°) e A b

Size of the target range of uncertainty #** at time t:

target e (S UB __SlLB)

Ze (s°—s") > Find the largest range of uncertainty %

max



Not a Standard Robust Optimization Problem

* A standard robust optimization problem:
— Given a range of uncertainty, would | be able to accommodate the
worst case?

 QOur problem:
— Given what | can do, what is the largest range of uncertainty | can
accommodate?



Example

* Do we have sufficient ramping capability to follow system load
deviation?

e Use the flexibility index to reflect the possibility and
magnitude of the ramping problem in the look-ahead horizon.

* Assumptions:
— Response time window is 5 minutes
— No cost threshold
— Only consider re-dispatch as corrective action
— Uncertain state deviation is a range of possible future load realizations

in the load-ahead horizon

* No transmission constraints are modeled.
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P(Cascade Size > 2)

Probability of Cascading Failure Under System Stress
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The load (a measure of system stress)
is varied from 800 MW to 1700 MW
and the system is subjected to:

* Independent generator forced
outages

* FOR = 0.08 (NERC GADS)
* Independent line forced outages

* FOR = 0.00434 (NERC TADS)

The ordinate is the probability of a
cascade in excess of 2 lines (or a loss
of load of 20% or more)
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Metrics of system stress, resilience, and flexibility:

P(Cascade Size > 2)

[EEN

Flexibility Metric
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xml (t)

Ty (1)

[ [ [ r [

oo :U(t) = system stress at time t

*
X = Phase change threshold

for system stress

Tm (t) = Stress margin at time t

In this case, the system
operating at 1 has a greater
margin to work with thanZ»>.
The stress margin can be
thought of as a metric of

k
900 1000 1100 1200 1300 1400 1500 1600
I Load [MW]
%

Ty I X L

stress

flexibility

1700
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Metrics of system stress, resilience, and flexibility

Resilience Metric
Compare the example, A, to the
example from [1], B:

9900909000900 090000
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®
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o
~
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o
o
T

o
i
T

P(Cascade Size > 2)
o
ol
T

035 04 045 05 035 06 065

0.3+ . X
oal ] It should be clear that: £B > €A
01n A Since the smaller the slope the more

0600 : : : gracefully the system degrades, this metric

800 900 1000 1100 1200 1300 1400 1500 1600 1700

Load [MW] can be thought of as a measure of system
Lo resilience
stress

Pe = P(C > C) = Probability of a cascade of size c or greater

5 — = Rate of change in the cascade probability with respect to system stress

[1] Liao, Apt, and Talukdar, “Phase Transitions in
the Probability of Cascading Failures,” 2004.
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Comparing Test Systems

P(Cascade Size > 2)

Generation
Capacity Limit

0.9+

—#— System 1
= System 2
—e— System 3
—e— System 4

0.8

0.7

0.5

0.4+

0.3+

Limit of System
Failure

e Each of the systems
were identical, except

i for the location of

generators and loads

e Even with such
similarity, each system
has a substantially

. different cascade

probability profile

|
900 1000 1100 1200 1300 1400
Load [MW]

|
1500

|
1600 1700
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System Complexity and Vulnerability
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New Control Architecture

Decentralized, loosely coupled system is
more resilient

Cooperation vs. Coordination among
subsystems

Methods and algorithms to support
spontaneous ad-hoc cooperation between
subsystems

Complexity must be measured and
controlled during design

Corrective vs. Preventive control

Wide-area SPS, RAS, SIP — not less reliable
than DR

Copyright © 1999 by Oxford University Press
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Introduction

Why are “EVs”, “Vehicle to Grid (V2G)”, hot topics?

Vehicle Electrification

Their number grows...

U.S. cumulative sales of plug-in electric vehicles
by monthly sales of all-electric cars (BEVs) and plug-in hybrids (PHEVs)
ber 2010 - ber 2014)

B PHEVs © BEVs

ales of plug-in electric vehicles (by month)

Cumulative s

urce: Electric Drive
ansportation Association

24/01/15 EV aggregation via PDE 3



Introduction

Why are “EVs”, “Vehicle to Grid (V2G)”, hot topics?

Net load - March 31

Vehicle Electrification

If not controlled, represents an addltlonal |
risk for Grid Resilience

* Additional loads during peak hours
e Extrainvestment in grid infrastructure

Axsen, J., & Kurani, K. S. (2010). Transportation

Research Part D: Transport and Environment, 15(4),
212-219.

Hadley S. Oak Ridge, TN: Oak Ridge National
Laboratory; 2006.

24/01/15 EV aggregation via PDE 4



Introduction

Why are “EVs”, “Vehicle to Grid (V2G)”, hot topics?

Vehicle Grid Integration

If controlled, represents a great opportunity for

 Demand Response
* Storage

US personal vehicles are parked 96% of time!
(A. Langton and N. Crisostomo, California Public Utilities Commission, Tech. Rep, 2013)

How can we model and control PEV loads during this available
time?

24/01/15 EV aggregation via PDE 5



EV aggregator

Aggregator |
A4

L]
—
am—

Vehicle-To-Grid (V2G):
Cars communicate with the Grid
Can “sell” energy

Aggregator:

Single PEV~ 5-20 kW

The aggregator collectively charges,
discharges cars.

The aggregator may participate in the
electricity market

Challenge: Controlling large population of EVs
» Participate in the electricity market

» Satisfy drivers and needs for mobility

» Be profitable for the aggregator

24/01/15 EV aggregation via PDE 6



PDE aggregation model

Fleet of EVs
500
400

Nb of 300

Cars

200

100

) =% 02 03 04 05 06 O

X (SOE)

u(x,t): number of cars, which are
plugged-in and charging at time t
and SOE x.

7 08 [l 1

Charging dynamics of vehicle i:

n"{(x:)
B B(t),

{1 if P(t) >0,

—1 if B(r) <O,

xi(t) — i=1,---,N,

X.: State of Energy (SOE)
n: Conversion efficiency
E...,: battery energy capacity
n"x)

max

Cars charge at rate Pi(1).

du d
—(x,1) = ——|[qc(x,t )u(x,t
5, (61) = —=-lge(x,1)u(x,1)] \  tormal flowe

24/01/15
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PDE aggregation model

Fleet of EVs = 3 states

u(x,z) CHARGE / G2V

Advection
N

L S O O N N N A

O-i—)C(x) t) IDLE

v(x,1)
A o o o o o o o o o

oiqd (%) DISCHARGE / V2G

R R R

w(x,?)
Advection
/\
—
0 Battery SOE, x 1

24/01/15

%(x t) = —GCisor(x,t) @)
%—;v(x 1) = ai[qd(x H)w(x,1)] @/

System of 3 coupled PDEs

EV aggregation via PDE



PDE aggregation model

EVs stop charging at 97% SOC. . V?hiC'e.DiStfibUti'?n - Ul izl
_gizzrr?;:gging
5000 H Idle

EVs discharge (V2G) between 6pm
and 9pm

4000 -
3000

2000

- JJ_I—/ |
FaN L - " e ! 1 1 \l_

0IJ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Why is this model interesting?

 Computation doesn’t depend on the number of cars

* Nice Parallel with TCLs

* Large number of analysis and control methods for PDEs

24/01/15 EV aggregation via PDE



Optimal Charging of V2G fleets

(Validation of the model with V2Gsim) 8 7 &

T;Il(l\' l

0id:0i—cs o

subject to
d d
a_l;(-m) = —m[qc(.x,r)u(x,r)] + Cisc(x,1),
adv ‘
E(x*’) = —O','_)C(.XQT) - Gi—)d(-x~r)

+Arr(x,t) — Dep(x,t),

ow ) .
T (1) = S [qaw 0] + 0 (x.1).

min C= /Celec(r)/qc(x,r)u(x.r) dx dt,
Dep
0

vVeG-5im

ulx,t) =0, Vx> Xpax,
V(L’) =0, Vx< Xmim
W(X.,T) — 0, v X S Xmin.

[ ga(X)w(x,t)dx > PY(t), V1.

1
Dep(x,t) dx = Dem(t), VYt

Xdep

1
/ (u+v+w)(x,Tnax) dx > Nyin.
Xdep
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Optimal Charging of V2G fleets

(Validation of the model with V2Gsim) 8 7 &

Tmax l

0id:0i—c:

subject to

u d

E(x’f) = 3 [ge(x,t)u(x,t)] + Cise(x,1),

dv
o7 —(x,1) = —0j_sc(x,1) — Ojq(x,1)
+Arr(x,t) — Dep(x,t),

ow )
—- (1) = ——[qa (%, )w(x,1)] + G1sa (x,1),

u(0,1) =0, w(l,t) =0,

min C= /Celec /qc(x,r)z.l(.x.r) dx dt,
,Dep
0

veaG-s5im

u(x,t) =0, Vx> Xuun,
’(- )_O VKSXmin‘,
wx, 1) =0, YV x<Xpin.

/qd w(x,t)dx > P(1), V.

/ Dep(x,t) dx = Dem(t), VYt
Xdep .

1
/ (u+v+w)(x, Tnax) dx > Npin.
Xdep

11




Optimal Charging of V2G fleets

(Validation of the model with V2Gsim)

min Ar Ax "'t
u,v,w,Dep ’;)]Z lec‘q] Jj

subject to
n+1 Arptt]

D
°p = M:u" + Maw" +

, an+1 , Z°F
[u+v+w]" + e e

ug =0, V;=0,

U = uo j(jAx), v} =vo,j(jAx), w] = wo ;(jAx), VJ,

u" V' w" Dep" > 0,
WE=0VY j> Xy -J
v’} =0V j< Xnin-J
W= 0V j < Xopin - J

24/01/15 EV aggregation via PDE

N 4

veaG-s5im

J

Z d]“] >Pdesn
]:

J

Z Dep'; = Dem"
jzxdep'J
J
Ax Z z[N+vN+wN > Nyin
jZXdep -J

12



Optimal Charging of V2G fleets

Price of electricity (c/kWh)

N
O
o

25

(a) Aggregate distribution of cars and price of electricity
Result : ‘ | Lo T
& —charge o ses .
§ —discharge Rl ENAW
© 1000({| |—idle R .
3 ---price e
) | S —— -
pd Tt . o=t .
0 \ | | / | \—/ |
0 5 10 15 20
(b) Power supplied to the Regulation Market
1100 ‘ : : :
o 0-00-00-00-0 . o Power to be supplied during the day e
s 1000+ °=%  |---Power supplied by V2G cars H,’” ]
= oo .
~— \ IO -d
GLJ 9001 s N o o B
% b"’\ o-d
o 8007 b e .o ,o—e-o—e-o—e'o-e—o-e |
7 | | | |
000 5 10 15 20
Time (h)
24/01/15 EV aggregation via PDE
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Conclusion

Conclusion
* Model is well suited to handle large population of EVs
 We gave an example for using this model to control a EV fleet

Ongoing work
* Heterogeneity and stochasticity
* Grid constraints

* Different optimization objectives

Thank you!

24/01/15 EV aggregation via PDE
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Optimally integrating renewables

P. R. Kumar
Based on joint work with Gaurav Sharma and Le Xie

Dept. of Electrical and Computer Engineering
Texas A&M University

Grid Science Winter

prk.tamu @gmail.com Conference
) LANL
http://cesg.tamu.edu/faculty/p-r-kumar/ Santa Fe

January 16, 2015 1/44



Uncertainty of renewable power

+ Wind power is stochastic, not dispatchable

Power (MW)

¢ How to integrate wind?

2/44



Demand response

¢ Adjust demand to match supply

¢ Some loads can be switched off for a while
without being noticed

- E.g., Air conditioners under thermostatic control

E
W ]_Comfort range
O

min

¢ Inertial thermal loads can absorb fluctuations
in available wind power

3/44



Flexibility of load requirements

¢ Amount of demand response will depend on
how flexible the loads are with respect to their
requirements

¢ More demand response possible

E .
W ]_Comfort range
)

min

¢ Lesser scope for demand response
é@ %Tn?z \_ /_7 \_ K— } Comfort range

4/44



Renewable power is not enough to
fully satisfy load requirements

+ Renewables can help reduce need for non-renewables

+ However, they cannot eliminate need for non-
renewables

] Non-renewable power
¢ Non-renewables still needed to maintain
. omfort range
required Omax ?_L -
- When wind stops blowing g @

Use non-renewable
O max - power to restore

— After sudden / |S comfort

comfort-setting change Omin @

— 5/44




Reduce peak-to-average non-renewable
power generation

+ Non-renewables still required

+ Need to reduce peak-to-average of non-renewable
power

More variability
A

Less variability

- Reduce expensive
spinning/other reserves, capital, etc 6/44



Concavity and desynchronization

7/44



A stochastic control problem

¢ Collection of loads

P non—renewable (t)

8/44



Stochastic control model
¢ Wind process Z P (t) ~ Markov process
¢ Temperature dynamics  x;(t) = h; — P°(t) — P*(t)

¢ Non-renewable power P'(t) >0

¢ Temperature constraint  z;(¢) € [Omin, Omax], Vi

+ Quadratic cost to S g
reduce variability Am /0 [Z P ()| dt

9/44



Optimal solution: Synchronization

¢ Theorem: The optimal policy synchronizes loads

Loads will remain synchronized
after this time instant

A

% —-—w-//\\/}

Load 1
@min

@max

—_—
time

¢ |s there some modification in the model or cost
function which leads to de-synchronization ?

10/44



Stochastic model for @_.

¢ Suppose users occasionally change O,,, .

settings at the same time

- E.g. Super Bowl Sundays @ game time

¢ Model changes in ©,,,,, as a two state Markov

process

11/44



Resulting stochastic control problem

Wind process: > PP(t) ~ Markov process

Temperature dynamics: z;(t) = h; — P°(t) — P;*(t)

Non-renewable power  P;*(t) >0

Stochastic comfort level ©,,,4.(t) ~ Markov process , ©,,42(t) € {0}, .1, O 0x }
Temperature constraint: zi(t) € [Omin, O2,,.], Vi

Maximum cooling rate:  P™(t) = M If z;(t) > Opmax(t)

T—oo I’

T
Quadratic cost: lim 1 / [Z P (t))*dt
0

12/44



HJB equation and optimal solution

« Costtogofunction VY(z,t):= min E

T
priERy /t (P + P3)*w(t) = i, th(t) = j,z(t) = =

oV oV oV
_ Pn _ P’w Pw L
Oz ° J 1ﬁ}3%§éU' ox1 ! + Oxy 2 X(i=1)

= qur (V7 = V') 4+ qj5 (VI = V) = 1y (Vo] +V,3) = VY

« HJB equation min {(Pp+ Py — O

Pn
P1nvP2n€U 8x1 1

oV, oV,
. , s e W.,0) if L >
« Optimal Solution (P(Z,7), Py (Z,7)) = {( ) faa&i}j il
(O7W) 1 oxq Oxo
( X * >
(3552 (#),0) if 5t > o
- ovr oV vy
(P50 PRI = ) (0352 (@) i <
\(% 83;1] f)’ % 8:;2] (f)) it 89;15 — 8:;;
. . oVi; _ 9V
« Optimal power allocation depends upon e, S B when x; < x5

13/44



Local concavity in stochastic ©_ ..

variational model

Keep the temperatures apart

Locally concave

1000

>
g
C
o
Q
>
©
3
»n
~J
©
S
N~
S
S
S
9
er
[
SRS
DO
RS
=0
B..l.

0b 031509

Load 2

20 30 40 50 60 70 80 90 100
Load 1

10
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Optimal solution for stochastic @_,. variation
model

+ Nature of the optimal solution

\ \ \ \ \ \ \ \ \ \ \ \ \ \ v S T T . —
\ \ \ \ \ \ \ \ \ \ \ \ \ \ v S s T =
N \ N \ N N N N N N N N N N ¥ ;oo T \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ v el e \ \
Al NN N N N N N N N N N N N N R s e VRN
o \ \ \ \ \ N \ N \ N \ N \ N = - - - T T ¥ \ \ ! !
(U N N N N N N N N N N N N \ \ - = T T \ \ 1 1 l /
O N N N N N N N N N N N N N 4 - — T . J 1 I3 Ve J Ve
— N N N N ~N ~N N ~ N ~N N N N N -~ - 4 4 4 rs rd v
q) N N N ~N ~N ~N N ~N N ~N + . - - - - - - - s e e e
— N ~N N N N N N N N . . - - et -~ LI L T I P B B e o o | L e ol T oy I IO O IO e e I IO I o e A IO B o s ol R o e ol
3 ~ ~ N ~ N N N N . ' - - - ) ~ f - _  — = - = = ~— -
- ~ ~ ~ ~ N ~ N L ' - - -~ e Ny ' ' - —_ — — — - ~ ~— o~
2 NN
q) ~ ~ N ~ N R B - - -— -— ~ B . - - - — —_ — —  — — ~— ~—
Q_ N N N N B R — _ -— - ~ N B - - -— -— -— ~—_  —  —  ~—  ~— ~— ~—
N N N . , _ - - — N , ) _ o — — — - - = - -
S| ~ >~ >~ T I T4 T I I I I I Z—T—=
[} Y . S DL . TN - - - —w—ll— — ——
— A ...
) _ - — — N , ) _ = — = = = — - . — — — — —
- - - N , - i
- — N , _ e
- , _ L — — = = = == — — — — — -
- _ _ _ = — = === = — e — — — — — -

Temperature load 1

Vector field of temperature changes

- De-synchronization at high temperatures

- Re-synchronization at low temperatures
15/44



De-synchronization/Re-synchronization
in solution

¢ |t is optimal to separate at high temperatures

NS

Time

Temperature

- Hedges against the future eventuality that the
thermostats are switched low

16/44



Issues in designing an architecture
and solution for demand response

17/44



Need for demand side and supply
side information exchange

¢ Loads need to know when to invoke demand
response

¢ Supply side needs to know how much
demand response will provide

+ Need for two-way communication between
demand side and supply side
- Volume of data
- Delay requirements of data

18/44



Need to respect privacy

¢ How to control demand without intrusive
sensing of temperatures of homes?

19/44



Need to reduce communication
requirements

¢ How to minimize communication requirements
for measurements and actuation signals?

20/44



Challenges

¢ Goals
- Maximize utilization of renewable energy
- Minimize variability of non-renewable power required
— Respect comfort constraints of homes

+ Architecture
- How to achieve demand pooling?
- Respect privacy: No intrusive sensing
- Minimize communication requirements
» Volume and latency of data
+ Solution
—- “Optimal” — efficient in some sense
- Computationally tractable for large number of homes

21/44



Architecture of the solution

22/44



Load aggregator: Price based aggregation

Price

\ i
i r————g
)

Comfort zone
Load

aggregator (O, : (1,0, (D]

Total Power

23/44



Load aggregator: Price based aggregation

Load
aggregator

P non-renewable (t)

24/44



Load aggregator: Microgrid with
renewable energy supply

Load
aggregator (O, : (1,0, (D]

P non-renewable (t)

25/44



Thermostatic control with set points Z,

=
Lt Lo
sl T Ltt" Boina(?)

Load
aggregator

=

1Y

P non-renewable (t)

26



Thermostatic set-point based control policy

Wind not blowing

@min

Ambient Cooling

temperature using Cooling using
rise “wind” “non-renewable”
r=h T=—c x =0

P"=0 PY=(h+c) P"=h

27/44



Problem: Synchronization of demand response

. . . . _
+ Optimal solution: All users behave alike PN
A - = = = -
¢ Loads synchronize and move in lock-step <> _{—\3
A~ 2\,
¢ Robustness problem: Suppose users f/_i_ ~~\,

change comfort level settings at same time
— Super bowl Sundays @ game time

¢ Demand suddenly rises, causing large
peak in nonrenewable power requwed

_ Model cost as hm f (P (t)) dt

28/44



Reduce peak-to-average ratio of non-
renewable power

+ Low variability in non-renewable power
consumption is desired

More variability Less variability
Higher Quadratic cost Lower quadratic cost

A

Prefer this

—- Lowers operating reserve requirements

¢ Impose a quadratizc cost on non-renewable
power usage f Pnon—renewable (t)dt 29/44



Staggered set-points

¢ De-synchronize load behaviors

¢ Choose different set-points(Z., Z, ..., Zx) for
different loads

30/44



Discomfort: Maximum cooling when comfort
range is violated

Restoring comfort
o using non-renewable

¢ Model changesin ©

max

(t)as a two state Markov process
1

/Th

Q 31/44



Stochastic optimization problem
for{z.z,.....Z,}

+ Stochastic wind process: P" (1)

¢ Temperature dynamics: x.(t)=h-P(t)

P(t)=P"(1)+F" ()
+ Comfort specification: X.()E[0,0_ (1)]

¢ Robustness model: Stochastic process ©__ (¢)

 hifx, () = Min(Z,,0__(1))

0 otherwise

¢ Set-point control: P"(t)=-

|
¢ Cost: C,=lim— [

lim— [ (Pt >)2df + VN%((% (1)~ ©,, (1)) d

i=1
Variation Discomfort 32/44



Evaluating the cost: Stochastic coupling

T N
+ Evaluation of cost lim — / (3 Py is difcul

T—so0o [’

¢ Needs N-dimensional joint probablllty distribution of
temperature states(z, xo, ..., xn)

¢ Can use stochastic coupling to solve this

1 | :
Z2 ......................... () .......... ................................ ...... Prob(})ln(t)_l_Pzn(t):z}l)
X, (1 : E
Z1.. /2 — = Prob(x,(1)=Z2,)
A (t) - ~ J
. > Needs only marginal
non-renewable 0 : h 5 2h distribution of x,()
power

33/44



The marginal probability distribution
of a load

A
@2 u ®max (t) .

6Z

e O

0

a k(=) 1:(11“) k(=) o
dp‘;I(I)[ _%g—_o _a%otg atn _ghf_l ]p(x)~
0 —2  _h ath 1 th
vhere k(z) = {’1( jigi The boundary conditions are M arg I nal p rObabI I Ity
G A A P ORI HE P :
L L } distribution can be
"5l L0 PIEen - [] :
i Y R 5 determined through

[— b Hp:(z)z[%]ag, solution of linear system
[ s 05, . equations
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The optimization problem for a
finite number of loads

¢ Minimize
c” (Z,,....2,) = E (Power level)2 x Prob(Power level) + v, E Expected Discomfort

¢ Subject to
0< 71 <Z3... < Zn < O

¢ Difficult
- High dimensional when N is large
— Complex
—- Need to solve different problems for different N’s

35/44



Continuum limit as V — oc.

¢ Solution
— Study asymptotic limitas N — oc.
- Consider Set of loads = [0,1]

— Can solve using analytical methods
» Pontryagin Minimum Principle

— Solution is explicit!

— Also asymptotic solution is also nearly optimal even for
small N!

— Essentially this solves the problem for all N’s

36/44



Difficulty with Euler Lagrange method

CP
¢ Calculus of variation problem J|u] = / F(u,u', 2)dz
— Euler-Lagrange solution 0

_ v®'(2) + 2¢(c+ h)Ds(2)

upL(?) 2(h2D1(2) + c¢*Ds(z))

+ This is not an increasing function, and does not
satisfy boundary condition

0.4

Euler Lagrange
0.3~ —  Solution %EL(Z)
0.2

0.1

@1 @2
0

Temperatur
emperature == 37/44



Optimal solution via Pontryagin’s
minimum principle

¢ Use Pontryagin’s Minimum principle

Control v(z)

State (non-decreasing): diu(z> — f(u’ v, Z) — 1)2 <Z) > 0
<

Hamiltonian: H = (u(z) — ugr(2))*w(z) + A\(2)v?(2)

Necessary conditions:

d

%Mz) = —2(u(2) —upr(z))w(z)

o(t) = argmin [(u(2) - upe (2)Pw(z) + A(2)e%(2)]

38/44



Optimal solution via Pontryagin’s
minimum principle

¢ Solution u(z) can not decrease u(z) has to
A have discontinuity

Euler Lagrange
= = solution uEL?z)

—Optimal solution u'(z)

o
Il A O L O

5 —/\'('z)

¢ This gives the optimal staggering of set points

39/44



Solving for finite N:
Approximation to continuum limit

¢ We can generate {Z;}7’ according to

0.8

0.6

04r-

0.2+

continuum limit distribution, to approximate
finite optimal distribution

----- Optimal finite case distribution
— Approximated random distribution |

- - =Optimal asymptotic distribution
L , I L | | | | ]
10 20 30 40 50 60 70 80 90 100
Temperature
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Some simulation results

¢ The random generation method works
reasonably well, even when N is small

— Optimal policy grid power
{ ‘‘‘‘‘ Approximate policy grid power

—— Optimal policy User discomfort
‘‘‘‘‘ Approximate policy User discomfort

— Optimal policy Total cost

‘‘‘‘‘ Approximate policy Total cost
! ! ! I 1 : l l |
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Some simulation results - 2

Load factor =

Average power

Peak power

+ Optimal policy has higher load factor than
other naive policies

01

0.08

0.06

0.04 Y\

0.02

— Optimal policy load factor
‘‘‘‘‘ Synchronized policy load factor

T e s e i p e 0 e e o w0 b w0 e o w0 e | e 0 o ] | —

Time
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Concluding remarks

+ Design and analysis of an architecture and a simple
set-point policy
- Is architecturally simple to implement

- De-synchronizes the loads to lower non-renewable peak-
to average

— Alleviates privacy concerns
- Simple to analyze, low communication requirement,
decentralized control
+ Many extensions are feasible
—- Response to comfort variations
— Availability of wind power
— Generalize wind model, temperature dynamics, etc. 43144
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Contingency analysis

 N-1 security has been the core power systems
operating principle for >50 years

 While it has served us well, it also has limitations:

« Not all contingencies are equally likely. Pla the
* Not all limit violations are equally important— What If
some produce blackouts, others don't. Game

e Sometimes components fail in sets (e.qg., storms)
or in unexpected ways (Aug. 14 2003 blackout).

* Binary: Imperfect data (e.g., from neighboring
areas) can change the apparent state of system
from insecure to secure. (2011 SW blackout)



Beyond contingency analysis

* Valuable insight comes from contingency
analysis, so replacing it would be unwise.

However, operators need additional
indicators of risk.

Lots of ongoing work:

PMU angle difference analysis, statistical indicators
(variance, autocorrelation), energy function/Lyaponav
methods, ...

Focus: Given a state estimator or day-ahead
planning model, quantity and explain the risk
posed by all potential cascading blackouts.



Beyond contingency analysis

 Focus: Given a state estimator or day-ahead
planning model, quantity and explain the risk
posed by all potential cascading blackouts.

 Why this is hard:

« All n-1 contingencies and most
n-{2,3,4}s do not cause blackouts.
Many samples needed to find one blackout.

 Power-law in blackout sizes means that we
need many blackout simulations to describe
the risk.

e Explaining why is always difficult (but
probably the most important thing we can do)

10 °f

Prob. that x> S for a randomly chosen blackout with size x

X Actual data
- = =Weibull fit (100 < S < 3000)
— Power-law fit (5S> 1016)

N R

10

Blackout size (S) in year-2000 MW



lllustration

Case 1 (noon tomorrow) Case 2 (2 pm tomorrow)
High blackout risk Low blackout risk

Both cases are secure.
What makes the two cases different?
How can we make Case 1 more like Case 27



The Random Chemistry
Method
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2. Now find many of the outage combinations

that cause blackouts (the malignancies)




The Random Chemistry algorithm
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3. Use the results to quantity
blackout risk

The estimated number of
malignancies of size k

Blackout sizes

> (Bl

MESRC,k Probability
of (multiple)
The number of contingency

malignancies of size k
found by RC

10



4. Estimating the number of blackout-causing
contingencies by modeling the rate at which
unique malignancies are found

ctual # n-2
malignancies

unique items founc

- = = estimated set size

: _ 1000 2000 3000 4000 5000 6000
nba.com Total # n—2 malignancies found (i2)

11
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Comparing RC to Monte Carlo

70 T T T T T T T T

T
(b) ——RC: S > 5%
sy MC:S=5% -
= oo ——RC:S=40%
S~ caee MC: S = 40%
e 6; S C:S %
' . v ,\"\.. 5 -
.g 55 ‘zs’; “_“'*'*U/I e . \
I ? { e ~r ~,
- 4 e ¢ A\, T TN - T raeenanc, ALLINTV I e
= 'f Y N s R . TS ':~-,":“ Ly e -
B SOYMR S, s
Q ) 60 LR W, NS —=
'c_‘c 4 n o LN l‘*\ 8 onl \,\‘(l.\\/‘\ n
= 5 :: || ul \\ o ‘7’\: ‘:’ N . \_\2 :’\
8 50 :: ": \ v Vs '\l
§‘ 40 :: '};v’ |‘ \:\:l\’ \\ o -
>< f :'ll' \‘l \' A .
= 35 0 200,000 400,000 !
:-xc,-lJ “ > .‘ ,.AM."S
m 30 ::.‘“ ’M ’.”’”’Qsos... 1
. o grive ety ' = il S 4
4
25 .
]
1
1 | 1

o
-

02 04 06 038 1 12 14 16 18 2
7

-

Number of calls to the cascading failure simulator x 10



Now that we can estimate blackout

INn?

ight can we gai

INS

k, what

ris
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Risk vs. load, glven SCOPF

60 I | | I T |
- 5%<BO<10%

I 10%<B0<20%

>0 I 20%<B0<30%
30%<B0<40%

401 [140%<B0O<50% :
BO>50%

Adding the SCOPF
changes the results
substantially from prior
work showing a phase
transition in risk vs. load

(N
-
T

Risk (Expected blackout size, kW)
— L
= S

0 | |
50 55 60 65 70 75 80 &85 90 95 100 105 110 115
Load level (percent)



Why?

* At high load levels SCOPF leaves larger margins
on long inter-area tie lines (to allow for potential
contingencies)

Total absolute flow on lines with large (>200MW)
base case tlow

Load level 95% 100% 105% 110% 115%

MW flow 16,312 17,032 17,102 16,869 15,916

15



Finding the contribution of
elements to risk

Differentiate the risk equation with respect to element
outage probabillities

max

Rro(z Z mjfk Z Pr(m)S(m, x)

C’kl mEQRC, k

A\

ORRe. M, 0
— = S(m,x Pr
op ~ ncal 2 St gy Prim

16



Distribution of
“risk sensitivity”

18—4 102 1072 10"t 10° 10 10* 10° 10" 10°
Branch Sensitivity (z, kW)
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Can we use this insight to
reduce risk?

Take the 3 lines that contribute most to blackout risk

Re-dispatch generators to leave more margin between
the flow on these lines and the limit (cut the limit in half)

Fuel costs increase by 1.6%
Large (5>5%) blackout risk decreases by 61%
Very large (5>40%) blackout risk decreases by 83%

Perhaps we would be better off without these lines”

19



Before and after
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Base case 3 reduced capacities
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Ingencies

-2 cont

-causing n

Do the blackout

change at different load levels?

21



39 N-2 malignancies at 75% load




540 n-2 malignancies at 100%

(C)




378 n-2 malignancies at 115%




Which components negatively interact with

5

t at different load levels

a given componen
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Branches that negatively
interact with * at 100% load




Branches that negatively
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Returning to the lllustration

2 pm tomorrow)

(

Case 2

noon tomorrow)

(

Case 1

ISK

Low blackout r

ISK

High blackout r

We now have a way to describe the differences

hy the

N w

K between these two cases and explal

N ris

two cases are different.
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Conclusions

e |tis possible to estimate cascading failure risk with a
reasonable amount of computation (e.g., overnight given

tomorrow’s peak-load model).
Random Chemistry approach is >100x faster than MC

Does this hold up for correlated event probabilities?

* Doing so gives insight that can result in real risk reductions:

More load is not always worse (8/14/2003, 9/8/2011)

Adjusting the flow limits on critical lines
Perhaps switching them out entirely?

* Providing visual feedback to operators may produce new
isight and ideas for risk reduction

paul.hines@uvm.edu
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Internet

SCADA

Power Grid

Importantly, this method is completely model-
agnostic. Describing risk in interdependent systems
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Work in Progress: Influence
Graphs

32



A larger influence graph
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Beyond Contingency Analysis
New Approaches to Cascading
Failures Risk Analysis

.~ For more information: Pooya Rezaei, Paul Hines and Margaret
Eppstein, “Estimating Cascading Failure Risk with Random
Chemistry,” IEEE Transactions on Power Systems (in press)
http://arxiv.org/abs/1405.4213
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Modeling and Computation of Security-constrained
Economic Dispatch with Multi-stage Rescheduling

Michael C. Ferris

Joint work with: Yanchao Liu, Andy Philpott and Roger Wets
Supported by DOE
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Grid Science Winter Conference, Santa Fe
January 15, 2015
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Power generation, transmission and distribution

W’&ﬂ\—k .
—_—— /ﬂ(\«\\\\’“‘
i m

@ Determine generators’ output to reliably meet the load

» > Gen MW = Y Load MW, at all times.
» Power flows cannot exceed lines' transfer capacity.

Ferris (Univ. Wisconsin) Risk & SCED Grid 2/32



Hydro-Thermal System (Philpott/F./Wets)

HYDRO THERMAL

Risk & SCED Grid 3/32




Simple electricity “system optimization” problem

SO: max ~0 Z Wi (di) — Z G(vj) + Z Vi(xi)

i Vi i kek jeT icH
st Y Ui(u)+ > vi= D dy,
i€H JET ke

xi=x2—ui+ht, i€H

@ u; water release of hydro reservoir i € H
@ v; thermal generation of plant j € T
@ x; water level in reservoir i € H
e prod fn U; (strictly concave) converts water release to energy
@ Cj(vj) denote the cost of generation by thermal plant
@ Vj(x;) future value of terminating with storage x (assumed separable)
o Wi (dy) utility of consumption dj
Ferris (Univ. Wisconsin) Risk & SCED Grid
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SO equivalent to CE

Consumers k € K solve CP(k): max W (di) — p" di

di>0

Thermal plants j € T solve TP(j): max pTvi — G(v)
=

Hydro plants i € #H solve HP(i): max_ p’ U; (u;) + Vi(x))

UjyXj 2>

st. x;=x0 — uj + ht

Perfectly competitive (Walrasian) equilibrium is a MOPEC

CE: dy € argmax CP(k), k ek,
v; € arg max TP(j), JeT,
ui, x; € arg max HP(7), i€H,
0<pLd Ulu)+D vz d
i€H JET kel
Ferris (Univ. Wisconsin) Risk & SCED Grid

5/32



Nash Equilibria (as a MOPEC)

@ Nash Games: x* is a Nash Equilibrium if

x; € arg min (;(x;, x*;,p),Vi €T
X €EX;

x_; are the decisions of other players.

@ Prices p given exogenously, or via complementarity:

0<H(x,p) L p>0

@ empinfo: equilibrium
min loss(i) x(i) cons(i)
viHp

@ Applications: Discrete-Time Finite-State Stochastic Games.
Specifically, the Ericson & Pakes (1995) model of dynamic
competition in an oligopolistic industry.

Ferris (Univ. Wisconsin) Risk & SCED Grid
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Key point: models generated correctly solve quickly
Here S is mesh spacing parameter

S Var rows | non-zero dense(%) | Steps | RT (m:s)
20 2400 2568 31536 0.48 5 0:03
50 15000 15408 | 195816 0.08 5 0:19
100 | 60000 60808 | 781616 0.02 5 1:16
200 | 240000 241608 | 3123216 0.01 5 5:12

Convergence for S = 200 (with new basis extensions in PATH)

Ferris (Univ. Wisconsin)

Iteration

Residual

0

1B W N

1.56(+4)
1.06(+1)
1.34
2.04(—2)
1.74(—5)
2.97(—11)

Risk & SCED

Grid
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Agents have stochastic recourse?

e Two stage stochastic programming, x' is here-and-now decision,
recourse decisions x> depend on realization of a random variable

@ pis a risk measure (e.g. expectation, CVaR)

4
SP: max ¢’ x! + plg"x?]

st. Axt=b, x>0,

EMP/SP extensions to facilitate these models

Ferris (Univ. Wisconsin) Risk & SCED Grid 8 /32



Risk Measures

@ Modern approach to T
modeling risk
aversion uses concept

>
of risk measures 2 T
(]
(] CVaRa mean Of :‘; | VR Maximum
. s a; loss
upper tail beyond w Probability

a-quantile (e.g. T “‘ mm t
CVa
a=09) | il

Loss

@ mean-risk, mean deviations from quantiles, VaR, CVaR
@ Much more in mathematical economics and finance literature

@ Optimization approaches still valid, different objectives, varying
convex/non-convex difficulty

Ferris (Univ. Wisconsin) Risk & SCED Grid
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Stochastic unit commitment: different risk measures

400

3501 — CVaR(0.95) ||

— Mean

CVar(0.9)

300+

250

200+

100+

50

0O
'S

8.6 8.8 9 9.2 9.4

Figure : Frequency plot for cost for 5000 (out-of-sample) simulations

Ferris (Univ. Wisconsin) Risk & SCED
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Equilibrium or optimization?

@ Each agent has its own risk measure
@ Is there a system risk measure?

@ Is there a system optimization problem?

manC )+ pi (C(xP(w))) 7277

e Can we modify (complete) system to have a social optimum by
trading risk?

@ How do we design these instruments? How many are needed? What
is cost of deficiency?

e Can we solve efficiently / distributively?

Ferris (Univ. Wisconsin) Risk & SCED Grid 11 /32



Contracts in MOPEC (F./Wets)

Competing agents (consumers, or generators in energy market)
Each agent minimizes objective independently (cost)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered
later (e.g. Arrow-Debreu Securities)

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

Can investigate new instruments to mitigate risk, or move to system
optimal solutions from equilibrium (or market) solutions

Ferris (Univ. Wisconsin) Risk & SCED Grid 12 / 32



Example as MOPEC: agents solve a Stochastic Program

Buy y; contracts in period 1, to deliver D(w)y; in period 2, scenario w
Each agent i:

min C(x!)+ pr (COE()))
st plxt + vy < plel (budget time 1)
pA(w)x? (w) < p?(w)(D(w)y; + 2 (w)) (budget time 2)

0<v.l— Zy,' >0 (contract)
0<pt L 2 (e,-1 - x,-l) >0 (walras 1)
0 < p?(w) L Z w)yi + ef(w) — x7(w)) >0 (walras 2)

Ferris (Univ. Wisconsin) Risk & SCED Grid 13 /32



Theory and Observations

@ agent problems are multistage stochastic optimization models
o perfectly competitive partial equilibrium still corresponds to a social
optimum when all agents are risk neutral and share common
knowledge of the probability distribution governing future inflows
@ situation complicated when agents are risk averse
> utilize stochastic process over scenario tree
» under mild conditions a social optimum corresponds to a competitive
market equilibrium if agents have time-consistent dynamic coherent
risk measures and there are enough traded market instruments (over
tree) to hedge inflow uncertainty
@ Otherwise, must solve the stochastic equilibrium problem
@ Solution possible via disaggregation only seems possible in special
cases
» When problem is block diagonally dominant (Wathen/F./Rutherford)
» When overall (complementarity) problem is monotone
» (Pang): when problem is a potential game
@ Research challenge: develop reliable algorithms for large scale
decomposition approaches to MOPEC

Ferris (Univ. Wisconsin) Risk & SCED Grid 14 / 32



Security-constrained Economic Dispatch

@ Base-case network topology gp and line flow xp.
o If the k-th line fails, line flow jumps to xx in new topology g.

@ Ensure that xx is within limit, for all k.

e SCED model:
min ¢’ u+ p(u) o> Total cost
U,XQ5e e Xk
s.t. 0<u<u > GEN capacity const.
go(xo,u) =0 I>Base-case network eqn.

—x <xp <X >>Base-case flow limit
gk(xk,u) =0, k=1,...,K Ctgcy network eqn.
—x<xx <Xk, k=1,...,K p>Ctgcy flow limit

Ferris (Univ. Wisconsin) Risk & SCED Grid 15 / 32



Reality offers a sweeter deal...

LTE

Normal

4 Lineflow

Time

<5min !

Contingency {
l/ %ccurs [
[

[

|

<15min

<30min

Operating procedure (ISO-NE) requires post-contingency line loadings be:

e < STE (short time emergency) rating in 5 minutes;

e < LTE (long time emergency) rating in 15 minutes;

o < Normal rating in 30 minutes.

Ferris (Univ. Wisconsin)

Risk & SCED

Grid
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What we will contribute

Research issues:

@ Corrective actions are not modeled in ISO’s dispatch software.
@ Because it was “insolvable” due to its large size (> 10GB LP).

» “We looked into SCED with corrective actions before, and were
hindered by the computational challenge.” — Feng Zhao, senior analyst
at ISO-NE, via private correspondence.

Our contributions:

o We model the multi-period corrective rescheduling in SCED;
solutions much better quality

@ Enhance the Benders' algorithm to solve the problem faster

@ Achieve about 50x speedup compared to traditional approaches

Ferris (Univ. Wisconsin) Risk & SCED Grid 17 / 32



Our model (K contingencies, T periods)

min c' up
X0ye+ 3 Xk, UQ 5, Uk

s.t. go(Xo, uo) =

gk(xp, up) = k=1,....K,t=0,..., T
hi(xE, uf) < k=1,....K,t=0,..., T
uf —uf N <Ay k=1,...,K, t=1,...,T
ud — uy = k=1,...,K

@ Subscript 0 indicates a quantity in the base-case network topology.
@ This is a large-scale linear program.

@ What special structure does it have?

Ferris (Univ. Wisconsin) Risk & SCED Grid
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Model structure

0 : ED optima point
Dt ot SCED optimal peint
2r <—Conpngenc/ 1,time0 1 minimizing
208 N * direction
i ‘% <—Comlngency1 time1
o F: : w <——Contingency 1, time 2
80r tH
.,,100§ '
e
1401
1601 . .
" Figure : On the ug plane, the feasible
= region of a SCED is the intersection of
200 ! Ny K+1 polyhedra.

N ECRET
Figure : Sparsity structure of the
Jacobian matrix of a 6-bus case,
considering 3 contingencies and 3
post-contingency checkpoints.

Ferris (Univ. Wisconsin) Risk & SCED Grid 19 / 32



Current state of the art (unsatisfactory)

Table : CPLEX v.s. Vanilla Benders Algorithm

C Ct Big LP (time) Vanilla Benders
ase 8y Simplex Barrier! | lter LPs Time
118-bus 183 207.8 13.8 8 1464 1235

2383-bus 20 175.0 2055 | 52 1040 1281.2
2383-bus 50 | 1403.2 123.1 | 49 2450 2799.3
2383-bus 100 | 3621.8 2406 | 32 3200 3688.6
2383-bus 400 - 23545 - - -

@ Three time-periods: 5-min STE, 15-min LTE and 30-min Normal.
@ Vanilla Benders' algorithm is inferior to the big LP formulation.

@ Big LP cannot handle large instances.

!Barrier method without crossover. Crossover may take even more time.
Ferris (Univ. Wisconsin) Risk & SCED Grid 20 / 32



How we enhanced the Benders' algorithm ...

© Reduce the number of LPs
@ Solve subproblem LPs faster

© Parallel computing

@ Add difficult contingencies to master model

Case Ctgey Big LP (time) Enhanced Benders
Simplex Barrier | Iter LPs  Time

118-bus 183 207.8 138 | 12 755 13.5
2383-bus 20 175.0 2055 | 11 60 41.5
2383-bus 50 1403 1231 | 11 135 46.5
2383-bus 100 3621 2406 | 12 245 79.4
2383-bus 400 - 23545 | 13 879 197.8
2383 wp 2349 21 9529 5157
2736 sp 2749 4 5500 220.9
2737 sop 2753 1 2753 100.5
2746 wop 2794 1 2794 1185
2746 wp 2719 14 5558 3335

Ferris (Univ. Wisconsin)

Risk & SCED

Grid
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[[lustration
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Figure : Benders' algorithm with reduced number of subproblem LPs, 118-bus
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Computational Results
RedLP+Opt Paraguss (8) Fatmaster (5)

Case  Ctecy G TPs  Time [ Tter LPs Time | Tter LPs Time
118-bus 183 | 10 764 726 | 14 776 151 | 12 755 135
2383 wp 20| 46 115 998 | 48 117 954 | 11 60 415
2383 wp 50 | 48 193 1603 | 48 193 101.7 | 11 135 465

2383 wp 100 33 289 226.0 32 288 96.3 12 245 79.4
2383 wp 400 35 953 9133 38 956 218.0 13 879 197.8

RedLP+Opt Paraguss (40) Fatmaster (5)

Case  Ctgey Iter LPs Time | lter LPs Time | lter LPs Time

2383wp 2349 | 106 12123 12165 | 104 9788 770 21 9529 516
2736sp 2749 45 5543 5836 44 5542 366 4 5500 221
2737sop 2753 1 2753 2801 1 2753 100 1 2753 101
2746wop 2794 1 2794 3046 1 2794 118 1 2794 119
2746wp 2719 | 262 8646 9738 | 278 8622 1428 14 5558 334

@ Big LP for 2383-bus 2349-contingency case generates a 18GB LP. CPLEX could
not solve it in 3 hours.

@ Computer used for the lower table: Dell R710 (opt-a006) 2 3.46G Chips 12 Cores,
288G Memory.

Ferris (Univ. Wisconsin) Risk & SCED Grid 23 /32



Dealing with Infeasibility

Cut & Contingency 2

!

(a) Contingency 2 is intrinsically in-  (b) Each individual contingency is
feasible.  Either the corresponding  feasible, but they are not simultane-

subproblem is infeasible or its Ben-  ously feasible. Their Benders' cuts
ders’ cuts will render the master prob-  will render the master problem infea-
lem infeasible. sible.

Figure : Two cases of infeasibility.

Ferris (Univ. Wisconsin) Risk & SCED Grid 24 / 32



|dentifying infeasible contingencies in Benders' algorithm

o If a subproblem is infeasible (in the first iteration), the corresponding
contingency is intrinsically infeasible. Remove (tabu) it.
» Typically line failure results in an islanded load node or sub-network.
@ Master problem infeasible: solve a modified master model to find the
“minimal” set of problematic contingencies using sparse optimization.

min fo(Xo, UO) + Z My

0.t keK
s.t. go(Xo, U()) = 07 ho(Xo, Uo) <0
Wi+ Ni(uo —Th) — vk <0,ve >0 V(k,i) e CUT

» Solution of this model indicates the violated cuts.
» Tabu the contingency that has contributed one or more violated cuts.

@ Start a pre-screening daemon in parallel when the Active List size is
smaller than Lfc.

» Tabu infeasible ones, and add feasible ones to the master problem.
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Computational Results

Table : Solution for big cases on opt-a006, 80 threads, L =5

Case Ctgcy | Iter LPs Time | To Master Tabu
2383 wp 2896 | 15 7694 522.1 6 547
2736 sp 3269 4 6020 252.9 1 520
2737 sop 3269 4 6023 2422 0 516
2746 wop 3307 4 6102 280.2 0 513
2746 wp 3279 8 6053 3343 4 560
2383 wp 2353 | 16 7156 460.6 6 4
2736 sp 2749 4 5498 2459 1 0
2737 sop 2753 1 2753 110.8 0 0
2746 wop 2794 1 2794 1317 0 0
2746 wp 2719 | 14 5558 354.4 4 0

@ Upper: all lines are in the Contingency List (N-1 security).

@ Lower: all pre-screened lines are in the Contingency List.
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SCED with SDP subproblems

@ Economic dispatch is a short-term planning problem, so a “DC”
model is OK.

@ Contingency response is an operational problem, and should be
studied on full AC network representation.

@ But AC power flow gives a nonconvex problem, which cannot
generate valid cuts from a Benders' subproblem.

Idea

Relaxing the AC feasibility problem using semi-definite programming
(SDP) to obtain a convex subproblem.

Goal
Producing a base-case dispatch solution such that contingencies are
“really” controllable in the AC context.
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SDP relaxation of AC feasibility problem

Model ACF-SDP:

min Age W

W>0

s.t. SN GE D < Ao W< Y G - D Vi € BUS
geg; g€g;
> G- DI™E< Ao W< Y G- D™ Vi€ BUS
geg; g€G;
—Fj<Asje W<F v(i,j) € LINE
(V) < Ao W < (V) Vi € BUS
D (G- D) < Asie W< > (Gl +Ay) Vi € BUS
gegi geyg;

@ It is a convex optimization problem and weak (strong) duality holds.

o It is a relaxation because the requirement that W has rank 1 is
dropped.
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Experiments

Case  Cont Solution . Performance
Model  Tabu Cost Time IF FS FT
LP 0 13253.3 42 | 12 12 0
14 20 | SDP 6 16065.8 18.4 6 0 0
SDPO 6 16003.4 11.9 6 0 0
LP 0 582.0 4.0 1 1 0
30 40 | SDP 1 585.0 20.1 1 0 0
SDPO 1 600.5 22.1 1 0 0
LP 0 12508.0 1.9 1 1 0
b7 20 SDP 1 12508.0 13.2 1 0 0
SDPO 1 12560.0 50.9 1 0 0
LP 0 139716.8 540 | 16 16 0
118 15 SDP 0 141372.2 2414.3 1 1 0
SDPO 0 144220.1 11951.1 0 0 0

@ SDP subproblem is “exact” in contingency response, no False Secure,

no False Tabu.

@ It takes longer time to solve (with room for improvement).

Ferris (Univ. Wisconsin)

Risk & SCED

Grid

29 / 32



Summary

@ SCED is a million-dollar problem for system operators.
@ SCED with corrective actions can save money, but is hard to solve.

» Too big for CPLEX
» Original Benders’ decomposition algorithm is slow.

© Our algorithmic enhancements yield significant speedup.
@ Potential for practical deployment.

© SDP extension allows for more accurate operational modeling.

Extension

1. Decomposition approach is useful in many applications.
2. Currently in collaboration with ISO-NE to deploy our algorithm.
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Conclusions

@ Optimization critical for understanding of power system markets
o Different behaviors are present in practice and modeled here

@ Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

@ Policy implications addressable using MOPEC
@ Stochastic MOPEC models capture behavioral effects (as an EMP)

@ Extended Mathematical Programming available within the GAMS
modeling system

@ Modeling, optimization, statistics and computation embedded within
the application domain is critical
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plg functions)

Currently available within GAMS
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Power System Operations

Power Flow Analysis State Estimation

‘ Power System Operations ‘
Generator Control Transient Stability Analysis

Time (oyoles = s#conds / 90.000000)

K. Dvijotham (Caltech)



Power System Operations: Typical Assumptions

Traditional Assumptions and Approach
Predictable Loads and Generation
Power Flow Directions mostly known

Linearized Analysis+Real-time simulations/monitoring

Heuristic Approaches to Nonlinearities
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Power Grids: The Future

The grid is changing:

@ large number of distributed power sources w

@ increasing adoption of renewables

= large-scale, complex, & heterogeneous ﬁ ﬁlﬁ ’?
networks with stochastic disturbances -7[' T TTM“
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Power Grids: The Future

The grid is changing:

@ large number of distributed power sources % T ![

@ increasing adoption of renewables : Wi ﬁ ﬁ gj"/\
IF Sinsidivi

= large-scale, complex, & heterogeneous lﬁ ;ﬁ/% ‘J%

networks with stochastic disturbances -] T TT|"?.

Implications
o Linearized Analysis (DC Power Flow) no longer sufficiently accurate

o Need efficient and reliable algorithms for “nonlinear” power systems
analysis

K. Dvijotham (Caltech) 6 /45



Notation

Notation
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Why is Power Systems Analysis Hard?

Linear Circuits Analysis Power Flow Analysis
I given, find V S given, find v

I=YV S=V.x1=V.x(YV)

Linear Equation, Easy Multivariate Quadratic
Equations: Hard!

K. Dvijotham (Caltech) 8 /45



Power Flow Equations in Polar Coordaintes

Power Flow Equations

Traditional Solution Methods
Multivariate nonlinear equations
Solved via lterative Linearization: Newton-Raphson
Works well under “nice conditions”
What if solver fails? No solution?

K. Dvijotham (Caltech)
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Our Solution: Use the physics!

@ Use energy function as analysis tool

@ Variational formulation of power flow
equations

© Computational tractability via convexity

www.shutterstock com - 125184986
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Our Solution: Use the physics!

@ Use energy function as analysis tool

@ Variational formulation of power flow
equations

© Computational tractability via convexity

v
www.shutterstock com - 125184986

Energy Function

K. Dvijotham (Caltech)



Table of Contents

@ Energy Functions for Power Systems

K. Dvijotham (Caltech) 11 / 45



Variational Formulation for Resistive DC Networks

Loss Minimization in Resistive Network

1
Minimize El,f-R,-j (Resistive Losses)
Ug()ee} e
Subject to ; = Z lij — Z Li (Conservation of Current)

J:(ig)e€E J:(U,i)eE

Solution of Loss Minimization

K. Dvijotham (Caltech)



Variational Formulation for Lossless AC Networks

Reactive Loss Minimization in a Lossless AC Network

i
Minimize Bl /Bij arcsin (y)dy (Reactive Losses?)
{l:(ig)€€} = _z
(ij)e€
Subject to P; = Z i — Z e (Conservation of Active Power)
J:(ij)e€E J:(,)eE
|fij| < Bjj

Solution of Reactive Loss Minimization
i
L(,0) = e By S %% arcsin (v) dy + (6 — 61) f
= 0= fj; = Bj sm( — 6;) = Active Power

[Bent et al., 2013][Boyd and Vandenberghe, 2009]
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Variational Formulation for Lossless AC Networks

Dual Form

K. Dvijotham (Caltech)
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Energy Functions for Power Systems - History

1958 2/3-bus case Aylett

1960- Kron Reduction Various

1980 Ignore  transfer authors
conductances Summarized
in Pai, 1981
1981-  Structure Bergen/Hill
1990 preserving Varaiya et al
models Van Cutsem
et al
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Energy Function for Lossless Power Systems

Main Assumption I

Energy Function for Power Systems

K. Dvijotham (Caltech)



Energy Function Properties

Stationary Points = Power Flow Equations
9E (p.0) :
8—0,' =0= P,' = ZBUEXp(p, -I-pj)sm (0, —91)
JF#
OE (p,0
% =0=Q = Z Bij (exp (pi + pj) cos (0i — 6;) — exp (2p;))
’ J#i
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Convexification Roadmap

Determine Region of Convexity C of E (p, )

Y
Operational Constraints C C

Y
Variationally enforce power flow constraints in convex way

K. Dvijotham (Caltech) 19 / 45



Convexity Region and Power Flow Solutions

Why seek solutions in Convexity Region?

DAC
K. Dvijotham (Caltech) 20 / 45



Convex Power Flow Solvers

Energy function E (p, ) convex over domain C

(5",6°) = argmin E () (1)
p,0eC

Power Flow Certificate

When can (p*, 6*) € int (C) be guaranteed? Trees?
“Critical Slowdown" of power flow solvers near collapse avoided?

K. Dvijotham (Caltech)



Convex Optimal Power Flow Solvers

Optimal Power Flow

Energy function E (p, 0; P, Q) strictly convex over domain C,S C C

Convex-Concave Saddle Point OPF

DAC
K. Dvijotham (Caltech) 22 /45



Convex Optimal Power Flow Solvers

Optimal Power Flow Certificate (A — 0)

What operational constraints can be encoded in S?7 Apparent power,
voltage magnitude bounds . ..
When is S subset of C?
Relationship to SDP/SOCP relaxations of OPF?
A general strategy for classes of QCQPs? Polar vs Cartesian

K. Dvijotham (Caltech) 23 /45



Topology Estimation

Sparse Topology Estimation from Phasor Measurements

K. Dvijotham (Caltech)
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Intuition from 2-bus case

Slack bus 0 1 )| Load
Q

f
p1 P1q1

Energy Function for 2-bus case

1
E(p1,01)=0b (5 exp (2p1) — voexp (p1) cos(91)) — p161 — qip1
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Intuition from 2-bus case

Energy Function for p=¢=.01 Energy Function for p=q=-1

log(¥)
log(V)

(a) p=g=.01 (b)p=g="1
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Intuition from 2-bus case

Energy Function for p=q=.2 Energy Function for p=q=.21

log(¥)
log(V)

(a) p=g=2 (b) p=g=.25
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Convexity of 2-bus case

Hessian of Energy Function
2exp (2p1) — voexp (p1) cos (61) woexp(p1)sin (91)>
V2E (61,p1) = b ;
(61, 01) ( vo exp (p1) sin (01) vo exp (p1) cos (61)
This matrix is positive semidefinite if and only if

voexp(—p1) _1Vo

> =
cos (01) > 5 2V,

Condition eliminates low-voltage solution
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No (P, Q) nodes connected

Special topology: No transmission lines connecting (P, Q) nodes.

Condition for Convexity

Let v; = 1pu at all / € pv.

|0; — 0] < 45deg, V; > ~ .7 suffices for convexity

Sl
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General Topologies

Condition for Convexity: Nonlinear Convex Matrix Inequality

DAC
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Conservatism in Convexity Region Estimate

Condition for Convexity: Sufficient, but Necessary?
@ For tree networks, yes

@ In general, unknown: Initial numerical tests show necessity for small
networks
@ Holds for all test systems available in MATPOWER

@ “Almost all” power flow solutions within convexity domain

o

@ Relationship to existence of power flow solutions: Answered for trees

@ Closing the gap for non-tree networks
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Estimated vs Actual Regions of Convexity: 3-bus network

A

A

BOl p1+ p2 Boz

P1q1 P2 q2

Reduced Energy Function
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Estimated vs Actual Regions of Convexity: 3-bus network

Convexity Region: No (P,Q) buses connected Convexity Region: Normal Loading
0

-50 0 50

5

(a) No (P, Q) connected (b) Base Load

Figure: Theoretical Convexity Region=Numerical Convexity Region
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Estimated vs Actual Regions of Convexity: 3-bus network

Convexity Region: High Loading Convexity Region: Over critical load

-50 0 50 -50 0 50
9 9

(a) 10xBase Load (b) Critical Overload

Figure: Theoretical Convexity Region=Numerical Convexity Region
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Estimated vs Actual Regions of Convexity: 3-bus network

Convexity Region: High Loading Convexity Region: Over critical load

-50 0 50 -50 0 50
9 9

(a) 10xBase Load (b) Critical Overload

Figure: Theoretical Convexity Region=Numerical Convexity Region
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Distance to Insolvability: IEEE 14 bu

Scale injections kP, dk Q. Detect Insolvability using SDP relaxation
[Molzahn et al., 2012]
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Distance to Insolvability: |IEEE 118 Bus

Scale injections kP, dk Q. Detect Insolvability using SDP relaxation
[Molzahn et al., 2012]

1
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Convexity Region Operational Constraints

Fix bound on max

viy
vV,

) =exp(lpi =)V (i) € €.

Find maximum ¢ such that |0; — ;| <6V (i,j) € € = (p,0) €C.

w
S

N

Bound on |OI-0||
S

~
=]

o
=]

w
=]

-
=

Convexity Region for IEEE 14 Bus System

Bound on |0I-v7||

50 Convexity Region for IEEE 118 Bus System

v
S

»
=]

w
S

N
S

10

-

15 2z
Bound on exp(|p;-,l)
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Summary
@ Power of Energy Function as an Analysis Tool
@ Several Applications in Different Power System Problem Domains

@ "Nice" power flow solutions easy to find

@ Convexity Analysis = Computational Tractability

Energy Function

Tractability
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Ongoing and Future Work

Ongoing Work
o Extensions to Lossy case: Fixed % ratio already works

@ Networks with small % ratios - Initialized to region of convergence of
Newton's method

@ Algorithmic developments and testing on IEEE benchmarks/real
systems

@ Relationship to Exactness of Convex Relaxations

Future Work
@ Scaling up algorithms - ADMM, Cutting plane etc.

@ Other Infrastructure Networks: Gas, Transportation etc.?

Variational modeling principles

K. Dvijotham (Caltech) 42 / 45



Variational Modeling for Convexity

Nonconvex Formulation
Control Variables: u , Dependent Physical Variables: x
Minimize f(u)
u,x ~——~

Convex Control Cost
Subject to h(u,x)=0, x€S§
——

Physics Safety Constraints

Convexity via Variational Prinicple
Variational Principle: h(u,x) =0= V4E (u,x) =0

Minimize f(u) + AE (u,x) (A <<1)
u,x

Subject to x € S

v,
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Damping electromechanical modes of oscillation

Generator redispatch is an open loop control that works by
exploiting nonlinearity: the change in the Jacobian when
the operating equilibrium is changed by the redispatch.
Contrast with closed loop controls directly affecting
Jacobian entries.

We have derived a new formula for eigenvalue sensitivity
with respect to generator redispatch.

The formula largely depends on power system quantities,
such as power flow and mode shape, that can be measured.



Previous approaches that use generator
redispatch to damp oscillations

1. Heuristics in terms of mode shapes [Fischer-Erlich].

2. Exact formulas for damping sensitivity from a dynamic
power grid model.
The formulas depend on both left and right
eigenvectors or their derivatives.

3. Numerical eigenvalue sensitivities by repetitive
computation of eigenvalues of a power grid dynamic
model.

There are problems getting online dynamic grid models,
especially for loads.



Model assumptions

We make usual assumptions for energy function analysis:
1. AC power flow.
2. Lossless transmission lines.

3. Generators:
» Have constant voltage magnitude.
» Their overall dynamics is given by the swing equation.

4. Loads that allow:

» Active power to depend on frequency.
» Reactive power to depend on voltage magnitude.



Eigenvalue sensitivity: New formula

Generator redispatch dP causes changes df in angles across
the lines and changes dV™ in load bus voltages:

dP = df and dV'™

Then changes df), dV'™ cause changes d\ in the eigenvalue:

df and dV™ = d\ (our new formula)



New formula: d\

mode shape or right eigenvector of \: x,
changes in angles across the lines: df,
changes in load voltage magnitudes: dV'®,
active power flow through the lines: p,
part of reactive power flow through the lines: ¢,

I net reactive power injection at load buses: @,

eigenvalue A\, mode shape x
generator inertias M, bus dampings D

(z,d0,dV™ p,q,Q)  (x,d0,dV™ p,q,Q)

(A, x, M, D) B (o)

To rank generator redispatches we only need to know the
phase of « for that mode.



New formula: d\

The sensitivity for a nonresonant eigenvalue A\ of the
system is given by

¢
- {Z{ )2 = (5,)%p, — 22,7, q, } dby
=1

o
dv;ln } 7

¢
> 1Al(Copa, + Cpp) + Co,Qi

k=1

+i

i=m-+1

where o = 2 2" Mz + 27 Dz,
and C, , G, , Cq, are functions of .



Key ideas and tricks to derive the formula

1. Classical assumptions:

> Lossless lines.
» No dependence of load real power on voltage
magnitude.

that yield potential energy function R:
R==b;ViVicos(d; — 0;) — > (Pid; + 1b; V2 + Q:In V)

,J i=1
i#jyinvg

and a symmetric network Laplacian L.



2. Quadratic form of eigenvalue problem [Mallada-Tang]
Q(\) = MA\* + DX + L.

@ is a symmetric complex matrix.
3. New idea of working with complex 27 Qz (not 77 Q)

4. “Line” angle coordinates # [Bergen-Hill] and new
line voltage coordinates v

0, — 0; — 0; if bus 7 is sending end of line £,
7\ 6, —6; if bus i is receiving end of line £,

v, = In (V;V}).

These new coordinates greatly simplify the derivation.



Special cases

» Mode with zero damping. d\ becomes purely
imaginary.

» Voltage magnitude constant. General formula
simplifies to

1‘9 pk
d k doy, 1
A= Z 22 T Mx + 2T Dx (1)

The terms of summation (1) that contribute more are those
in which the product (xgk)ka is large.

Ty, = change in right eigenvector x angle across line k
pr = real power flow through line k



Computing damping ratio after redispatch is done

» The new formula for d\ may be used to compute the
damping ratio of the interarea mode A\ after redispatch
is done

_ Re{A+d)\} o+do

A+ dA| V(04 do)? + (w+ dw)?’




Example: New England 10-machine system

» Interarea modes at the Base Case

Damping
Mode No. Mode A (1/s) f (Hz) Ratio (%)
1 -0.0403 + j3.4135 0.5433 1.1816
2 -0.0188 + j4.7631 0.7581 0.3955
3 -0.0249 + j5.4994 0.8753 0.4528
4 -0.0558 + j6.0159 0.9575 0.9275

» We will look at damping mode 2 with generator redispatch



Example: New England 10-machine system

&
@ GL
® ®
@
@®\©\® ® ® ®/ ®/‘§3D10
e 2
®
® @
® ®\ b

& @/® ¢ %o @/d\‘@

T %‘gﬁ

G3

» Arrows in gray scale show the magnitude and direction of
the power flow at the base case.

» Red arrows show the oscillation mode shape for As.



Damping ratio of Mode 2 of New England 10-machine system

Dampilna Ratio (%)
it (G5+G9-) ®
[ ]
[ ]
1.0¢ o° .
[ ]
[ ]
0.8! o
°® .'.
o o
0.6l ..:::.J (G5+,G4-)
020°
;0-'9""’. (G4+,G9")
8883§
vvvvv geev g0
ssaee’ 000..... 0.2F
cos00?®® 1 1 1 i
%04 02 02 0.4 Redispatch (pu

» Gradient of damping ratio at base case from formula
indicates the effectiveness of larger redispatches

» Of the 45 possible pairs, pair (G5+,G9-) has the largest
increase in damping ratio.



Comments on redispatch for increasing Ay damping ratio

» The pairs with the largest increase in the damping
ratio are the ones in which G5+ is involved, that is,
G5 with an increase in its generation.

» Why G5 is playing a key role? ... get some insights
from the components of the new formula.



Getting insights from Re{d\}

» For this redispatch, change in df is larger than change
in dV'™, so look at dfl components of formula.

» The pairs with the largest increase in damping ratio
are also the ones with the largest increase in the
damping of the interarea mode \s.

So take the real part of the formula dA:

4 n
Re{dA\} = > Re{Cy }db), + > Re{Cy,}dV}"

i=1 i=1

= Re{Cy} - df + Re{Cy} - dV™, (2)



Re{d\} = Re{Cp} - df + Re{Cy} - V™™
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» The gray scale in lines shows |[Re{Cp}| for As.



Re{d\} = Re{Cy} - df + Re{Cy} - dVI

» The gray scale in lines show the changes in power dp, due
to redispatch in pair (G5+,G9-).



Re{d\} = Re{Cy} - df + Re{Cy} - dVI
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» The gray scale in lines show the changes in angles df
across the lines, due to redispatch in (G5+,G9-).



Re{d\} = Re{Cp} - df + Re{Cy} - V™™
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» The gray scale in lines shows |Re{Cjy} - df| for redispatch
(G5+,G9-).



Obtaining the formula denominator’s phase (Za) from measurements

d\ = w = Za = /Numerator — ZdA
» There are always small random load variations around
an operating point.
» For such small random load variations:

» Samples of d\ can be obtained from PMUs.

» Samples of df and dV'™ can be gotten from the load
flow equations with simulated random load variations,
then samples of the Formula’s numerator can be
computed.

» The d)\ samples and the numerator samples can be
analyzed with Principal Component Analysis, then
the phase of o can be obtained from the Principal
Axes of the samples.



Samples’ plots for random loads variations generated with the software

Mathematica

Numerator

Im{Numerator}

.
s 0.00005]-
. . .
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Axis

.
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0002 (004 l 0,006

Re{Numerator}

Principal
Axis

o 005
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Im{daz}

0.10]

o
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-0.0015\-0.0010 -0.0005_~"«
. . .

-0.05

: .

-0.10

0.0005 0.0010 0.0015
.

Re{dAz}

» Plots show the samples of 50 points after trimming by

30%.

» Principal Axes are computed and shown as lines

Za = /Numerator — Zd\

= 179.51° — 89.24° = 90.27°



Conclusions

» Using a judicious combination of new and old
methods, we can derive a new formula for the
sensitivity of oscillatory eigenvalues \ with respect to
generator redispatch.

» The formula depends on:

1. The mode shape of \.

2. The eigenvalue A of interest.

3. The power flow through every line.
These power system quantities can, at least in
principle, be observed from measurements.

4. The assumed equivalent generator dynamics only
appear as a factor common to all redispatches.

» For purely imaginary modes the change in A becomes
purely imaginary.



Conclusions and Ongoing Work

» We have an approach to ranking the generator pairs
for redispatch to damp the oscillations where the
dynamics is largely determined from PMUs.

» We are exploring the insights and applications of the
formula.

» We are refining the combination of synchrophasor
measurements and calculations.
Goal: Dynamics from PMUs and statics from the state
estimator. Then results largely independent of poorly
known dynamic models.

S. Mendoza-Armenta, I. Dobson, A formula for damping interarea
oscillations with generator redispatch, IREP Symposium - Bulk Power
System Dynamics and Control - IX Crete, August 2013.
http://arxiv.org/pdf/1306.3590v2.pdf
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Motivating (1.e. Unrealistic) Toy Example

)
>
Bus 4

Prs =100 MW
Fu =4972MW  Pgs =0MW

Fi» =5028 MW Fa =5028 MW

Bus 1
Pg = 100 MW

Bus 3

Rules of the toy example:
1. Cheap generation at node 1; expensive generation and

customers (100 MW) at node 4;
2. All lines can carry the same fixed load (55 MW);
3. Parallel edges have the same resistance.




Building More 1s Not Always Better

S S

M = $47 .39

Fs|3 =36.13 MW
usiz = 30

Fs‘_m =54.6 MW
Ms24 =80

FSZB =1847 MW
usz = $0

o] Bus4
PG| =9].13 MW =
7, =$11.76 Fsi3 = 55MW Prs = 100 MW
l ' usiz = $66.30 s34 =36.53 MW Pgy =887 MW
s = 30 ny=$51.77
Bus 3
3 = $60.54

 The link between buses 2 and 3 overloads line (1,3)
e Congestion -> Out of merit dispatch -> Higher
system cost




Building More 1s Not Always Better

S S

= $47.39

Fs|3 =36.13 MW
usiz = 30

Fs‘_m =54.6 MW
Ms24 =80

FSZ3 =1847 MW
usz = $0

o] Bus4
PG| =9].13 MW =
7, =$11.76 Fsi3 = 55MW Prs =100 MW
l ' usiz = $66.30 s34 =36.53 MW Pgy =887 MW
s = 30 ny=$51.77
Bus 3
3 = $60.54

This is a cutesy example of “Braess’ Paradox” in an
electric transmission circuit.
(Reviewer #3: is this really a Paradox, or just

Kirchhoff’s Laws cominﬁ back to bite us?:



All Braess, All the T1ime

Braess (1968): Traffic paradoxes

Every system that could possibly exhibit behavior

remotely Braess-like:

* Computer networks (Korilis, Lazar, Orda; 1997, 1999);
* General pipes (Calvert and Keady, 1991);
* Springs (Penchina and Penchina, 2003);
* Semiconductors (Pala, et al., 2012);

* Biological Cell Networks

* Crowd Control (Hughes, 2003);

* Basketball Teams (Simmons, 1999);

* Multi-agent Systems (Wolpert, 2002);

* Newcomb’s Problem (Irvine, 1998);

* May be self-resolving (Nagurney, 2012);



More Realistic: IEEE 118 Bus

Net Benefit ($)

10e-04

A% 300 200 100 . toe07  Outage

Probability
Demand at bus 90 (MW)

\‘I(l'“‘ <

Wheatstone A )

-

ho

” Wheatstone C




'T'he Risk-Cost Nature of Transmission

At low levels of demand, the
A . Wheatstone bridge causes
500_ Lo congestion but offers no
w0 M ). additional system security

Net Benefit ($)

10e-01

10e-04

500 | > i
il 300 200 160" “10e07 ~ Outage

Probability
Demand at bus 90 (MW)



'T'he Risk-Cost Nature of Transmission

At high levels of demand, the
,,,,,,,,,,,,,,, Wheatstone does increase
. system security. The nature of
e Ve the risk-cost tradeoff depends on
00— - . . the outage probability and the
value assigned to lost load.

Net Benefit ($)

" 10e-01

10e-04

500 | p 2
S 300 200 160" “10e07 ~ Outage

: Probability
Demand at bus 90 (MW)



'The Risk-&est Benefit Nature of

Transmission Security?
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Discrete (Optimal) Topology Control

Bus2

12 = 5028 MW

Bus 1
Ps = 100 MW

Bus3

Bus2

m, = $47.39
Fs]‘_) =36.13 MW
usiz =30

)

Bus 1
Pg, =91.13 MW

n =$1176 Fsi3 =55 MW

psi3 = $66.30

Bus 3
73 = $60.54

= $0

NE

Fsﬁ_,g =54.6 MW

Ms2 =$0

18.47 MW

Fs34=36.53 MW
Hs3a = $0

Fa =5028 MW

Fa =49.72 MW

Bus 4
Prs =100 MW
Pgs =0 MW

Prs =100 MW
P(;4 =887 MW
ny=$51.77

Opening redundant
circuits for
economic reasons,
unless a failure
occurs elsewhere in
the system.

Some security cost,
but hopefully not
too large if done
smartly.

10




Achieving Optimal Topology Control

* Discrete topology control is a hard
optimization problem. So we could find
clever new ways to solve large MILPs.

* Use off-line screening to identify areas of
the network that are more likely to exhibit
Braess type behavior (or to exhibit risk-cost
security properties).



Who Needs a Big Optimization Problem?

Periods (Hours)

Lines 1 2 3 4 | 5§ 6 7 | 8 [ 9 |10 [ 11 | 12 | 13 |14 |15 | 16 [ 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24
109-111 |-001| --- | == | - | == | — [-.001| --- |.193 8 Bl
2-113 | - | - [ === | == [ o= | o [ o | e | e | e | e | e | e e | e | e | e | e | e | = | = | - | - |01
113-215 |-.027|.000 | .000 | .000 | .000 | .000 |-.027| --- | - | --- e e el Bl Bl Bl el Ml B - 335
201-202 |.000 | --- | - | = | = | = |.000| --- | - | = | - | - | = | = [=002] --- | - | - | - [ - | - | ---
209-211 | - | - [ = | - | = | = [035] - | - | —- e B ---
215216 | - | - | - | = | = | = | | == [ =] - | = |015[.010] - [.015]-.002] --- | == | === | = | === | e | o= | -
215-221 | - | - | - | e | e | e [ e | e [ = | e | - |2024-024) - | - | - | m | e | e | e [ e | e | - | -
217-218 | --- 1.000.000 | .000|.000|.000 | --- |.017].024].033]1.032| - | -— |.032| --- | -— | - | - | - |.035].035|.034| --- |.016
ALY B e el el Bl Bl Bl Bl et el el Mt M M M Mt LS T e B P Ml Ml M el e
218-221 | - [ - | - | == | == | = [000] --- | - | == [ == | === | == | == [003] --- [003] --- [003] --- [ - | - [ - | -
219220 | --- | - | o= | o= | e [ e [ e e 025 - | e | e [ e | e e | e e e e e | e |
ALDY N e e Bl el Bl Bl Bl Bl Bl Bl Ml Bl el Bl el el el B M S (0 e M M
220223 | - | - [ - | = || = || - [018] --- [ — ].027[.028).027| --- |.029]|.030| - | --- | - | == | = | == | ---
220223 | - | - | = | = | = = = e = e e e e e e | e e | - 034 - | - | - | -
309-311 |.020| --- 1.000| --- | - | ---
310-311 | --- [.000 | == | === | o= | e [ o= [ mmm [ e = [ e e e e e e e e e e e |
318-321 J.000| - | - | - | == | = | --= | --- [-.001] --- [ -— ]-.003{-.003]-.003|-.003|-.003 --- | --- [ -
318-321 | - | - | - | - | = | -- [.000]-.001| --- | -- | - ]-.003(-.003]-.003| --- |-.003| --- | --- [-.003
320-323 |-001| - | == | =~ | = | = | = ||| === === === = || | - |.002
320-323 | - | - | o= | o= | e | = | e | e | e | e | e | e | e | e | e | e | - |01 018 - | - | - | - | -
#Swd' [ 6 3 3 2 2 | 2 7 3 6 3 5 7 7 6 y 71 4|3 5 6 3 1 2 3
Cost $k* [7.27[7.26]17.25[7.25]7.25|7.25(7.27|7.34[7.44]7.54[7.59]7.60|7.59|7.60|7.60|7.56]7.55[7.55|7.51[7.50|7.50|7.51|7.44]|7.31

[S:]  ]-0.01]0.00{0.000.00[0.00]0.00[0.03]{0.19[0.60|0.88|1.07[0.93/0.92[0.97]0.68[0.92]0.91[0.89|0.82/0.89|0.81]0.03 [-0.14]0.13

[Sz]* 10.00[0.00|0.00]0.00[0.00]0.00[0.05]{0.19]0.55]0.821.03[0.76]/0.76 [0.93]0.72[0.86|0.89 | 0.84 | 0.74 | 0.83 [0.720.03 [ 0.00 | 0.10
"#switched lines produced by Optimal Transmission Switching. > Total system cost of the un-switched system in thousands of dollars.
3 S, represents the hourly sum of the marginal % savings of all of the switched lines. * S, is the Optimal Transmission Switching % savings.

L | [ B W

$-30 $-20 $-10 $0 $10 $20 $30

—




How About Little Optimization

Problems?

0.18%

0.16%

0.14%

0.12%

w~0.10%

Y 0.08%

0.06%

0.04%

0.02% I

0.00% -J !
1 3 5 7 9 11 13 15 17 19 21 23
Periods (Hours)



Who’s on Braess?

Screening for Braess’ Paradox

* Toy examples
* Four-bus power network
* Four-node gas pipeline network

* Larger networks

* Electrical networks: clustering and sensitivity based
screens

* Gas networks: spanning trees



Four Interesting Observations

1. Detecting Braess’ Paradox efficiently is impossible
(Roughgarden, 2004);

2. For networks obeying Kirchhoff’s Laws, Braess’
Paradox can only be observed in Wheatstone
Bridge sub-structures (Milchtaich, 2005);

3. For Hazen-Williams networks, the two-terminal
Wheatstone Bridge is the simplest structure to
exhibit Braess’ Paradox (Calvert and Keady; 1991);

4. Every network can be decomposed into series-
parallel and Wheatstone Bridge subgraphs (Duffin,
1965).



Four Interesting Observations

1. Detecting Braess’ Paradox efficiently is impossible
(Roughgarden, 2004);

2. For networks obeying Kirchhoff’s Laws, Braess’
Paradox can only be observed in Wheatstone
Bridge sub-structures (Milchtaich, 2005);

3. For Hazen-Williams networks, the two-terminal
Wheatstone Bridge is the simplest structure to
exhibit Braess’ Paradox (Calvert and Keady, 1991);

4. Every network can be decomposed into series-

parallel and Wheatstone Bridge subgraphs (Duffin,
1965).



Calvert-Keady Framework




Detecting Braess: 1oy Power Network
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Detecting Braess: 1oy Gas Network

LS S Linear conductivity analog
(Ayala and Leong, 2012)

Production
Node

Demand qu = Ll] ) (pz — p])

Node

Line 34 congested: L — T . C

13 ps, Q34 constrained ij ij ij
2
.= [1+
/ \l ro—1




Detecting Braess:

a,. (MMSCFD)

P (psia)

30
25
20
15

10

-10
0.1 1

250
230
210
190

920

O34 constrained @ 15 MMSCFD s

Aa3
bridge

10
C,; bridge (MSCFD/psi)

100

1000

6(p1 _p4) <0
aC,,

p; cons trained @ 160 psia

o

(p1 = pa) E

P>

0.1 1 10

C,; bridge (MSCFD/psi)

100

Toy Gas Network

Pipe transportation capacity
versus Wheatstone Bridge pipe
conductivity (C,;):

00 /9C >0

Network pressure loss versus
Wheatstone Bridge pipe
conductivity (C,;):

a(pl _p4)
0C

23

> ()




Detecting Braess: 1oy Gas Network

Network condition:

1,1, 'C12C34 —- 1,1, 'C24C13 =0

25

20 i3

15

O34 constrained @ 15 MMSCFD 4
10

q.. (MMSCFD)

i - Equivalently (since parallel pipe
pressure ratios are the same):

C12C34 - C24C13 =0

-10

0.1 1 10 100

C,; bridge (MSCFD/psi)

1000

250

P (psia)

230
210

6(]71 _pd) >0
ac,,

190

p; constrained @ 160 psia

T

(p1 - P4) i

P>

920

0.1 1

10
C,; bridge (MSCFD/psi)

100

C, Gy > GG leads to (aQt /9Cy, ) <0
4G5 > €, G, leads to (an /9C,; ) >0



The Complexity of Braess’ Paradox in

Pipeline Networks

k *Qt

The existence of a
Wheatstone Bridge
topology within a larger
network may induce
larger pressure drops
even without causing
“congestion” in the
pipeline system.

22



The Complexity of Braess’ Paradox in

Pipeline Networks
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If the fraction of fluid take-
off to one point versus
another (the parameter k)
exceeds a critical
threshold:
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Screening for Braess’ Paradox in Large

Networks via Clustering
Factoid of the day:

The clustering coefficient of the Wheatstone
network is 5/6.

Second factoid of the day:

No other four-node network (with minimum
geodesic path length equal to two) has the
same clustering coefficient.



Clustering-Based Algorithm

Step 1: Using the node-edge adjacency matrix, reduce all
simple series and parallel connections. (This step may
need to be iterated.)

Step 2: Define R, as the set of all node pairs with geodesic
path length two, and R, as a subset of R, such that there
are two such geodesic paths.

Step 3: Calculate WS =T M DM R, NR,

Step 4: For all node pairs in WS, construct the adjacency
matrix consisting of the node pairs and all neighboring
nodes.

Step 5: Calculate the clustering coefficient for each
subgraph in Step 4. Those with a clustering coefficient
equal to 5/6 are Wheatstone Networks



Implementation on 118 Bus Network

Clustering-based algorithm
plus some network
equivalencing produces
screening curves like the
one below.

1007 "Feasible Region"

"Infeasible Region"

[o2]
o

Line (1,2) F™ (MW)
B [e)]
o o

N
o
|

o

0.001 0.01 0.1 1 10
Line (2,3) Susceptance (per-unit)



Another Approach: Spanning Irees

0 25 5 10
e e —

Legend

4dl RGNC Piant Facility
—— RGNC WTX Gathering

| Upton

Midland|

Waha gathering system:

61 nodes (some of
which have
compressors, others
just have valves)

100 edges

* 5 supply nodes, one

consumption node



Another Approach: Spanning Irees

Algorithm:
25mmscfd 275 60 o . .
N/ 1. Construct minimum spanning tree
éWGl .
(we just use Kruskal’s method)
b g 2. Network equivalencing to isolate

! subgraphs with loops
7, 3. Use previous screening tools to
LA S assess these subgraphs

Outlet (Demand) Node
© 125mmscfd

28




Another Approach: Spanning Irees

* Elementsin the
spanning tree are
shown in bold;

oo ® Subgraphs of
interest are
highlighted (there
are more possible
subgraphs to
consider...possibly
125 mmsctd unwieldy....

25
mmscfd

29



The Reach of 'lopological Inethiciency

Pressure is held
constant at node 33.

Multiple topological
inefficiences
contribute to
increased horsepower
requirements




The Reach of 'lopological Inethiciency

 Here, pressure is held
constant at node 38.

“ '« Note that holding
pressure constant at
the demand node
does not itself induce
any paradoxical

6 behavior (this is
H s probably a fluke
% though we aren’t
sure).




" Congested lines

A14B(:mn = ELODF;],mn X (P >x<mn Auij — Pmntuij)
ij
Measures re-
allocation of flow
from overloaded to

under-utilized
branches

RTS-96 Hour 20

32



Screen for R1'S-96 System
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RTS-96, Hour 14
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IEEE 118 Bus System
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Prospects for Topology Control

* Discrete topology control is a hard optimization
problem. But there are probably clever ways to
shrink the size of the problem.

e Subgraph screening is one possible way, but
algorithms (mine, anyway) need improvement.

* Some are fast but run the risk of false negatives (and
false positives? we don’t really know)

* Others work well...but just aren’t that efficient.



'Thank You!

Seth Blumsack
blumsack@psu.edu



New developments on solving AC-OPF on sparse networks

Daniel Bienstock and Gonzalo Munoz, Columbia University

January 2015



Optimal power flow problem in rectangular coordinates, simplest form

Variables:

e Complex voltages er + 3 fr, power flows Py, Qrm, auxiliary variables

Notation: For a bus k, d(k) = set of lines incident with k; V = set of buses

min

s.t. Vkm :

VEkm :

Ykm :

VEk :

VEk :

VEk :

VEk -

Basic problem

o

keV
Py = gkm(e% + fl?) - gkm(ek‘em + fkfm) + bkm(eszm - fkem)

ka — _bkm(ei + f]?) + bkzm(ekem + fkfm) + gkm(ekfm - fkem)

|Pkm|2+‘ka|2 S Ukm

prn < ¥ Py < PP
km € 0(k)

R <Y Qe < QR
km e §(k)

‘/kmin < 62 + fl? < ‘/;cmax,

Here, F} is a quadratic function for each k.



Optimal power flow problem in rectangular coordinates, simplest form

Variables:

e Complex voltages er + 3 fr, power flows Py, Qrm, auxiliary variables

Notation: For a bus k, d(k) = set of lines incident with k; V = set of buses

Basic problem

min Z Ch

keV
s.t. Vkm : Pin = gkm(ez + f/?) - gkm(ek‘em + fkfm) + bkm(ek:fm - fkem)

Vim :  Qpm = —brm(es + f2) + brmlerem + frfm) + Grm(erfm — frem)

Vkm : |Pkm|2+ ‘ka|2 < Ukm

Vk: Ppno< N Py, < PP
km € 0(k)
Vk: QP < Y Qe < QP

Vi - ‘/kmin < 62 + fl? < ‘/;cmax,

Vk: G = Gi| Y. Qim

Here, G} is a quadratic function for each k.



Optimal power flow problem in rectangular coordinates, simplest form

Variables:

e Complex voltages er + 3 fr, power flows Py, Qrm, auxiliary variables

Notation: For a bus k, d(k) = set of lines incident with k; V = set of buses

Basic problem

min Z Ch

keV
st. VEm:  Pun = grm(es+ f2) — grmlerem + fifm) + brm(erfm — frem) (3a)
VEm:  Qrm = —brmle; + 7))+ brm(exem + fufm) + Grm(enfm — frem) (3b)
Vkm : |Pkm|2+ ‘ka|2 < Ukm (30)
Vk: Ppno< N Py, < PP (3d)
km € 0(k)
vk min <Y Qg < QP (3¢)
km e §(k)
Yk VRS gt fi <0 Ve (31)
Vi Ch= Fol Y P + Gi| D Qim|- (3g)
kmed(k) km e d(k)

Here, F}, G are quadratic functions for each k.



Optimal power flow problem in rectangular coordinates, simplest form

Variables:

e Complex voltages er + 3 fr, power flows Py, Qrm, auxiliary variables

Notation: For a bus k, d(k) = set of lines incident with k; V = set of buses

Basic problem

min Z Ch

keV
s.t. Vkm : Pin = gkm(ez + f/?) - gkm(ek‘em + fkfm) + bkm(ek:fm - fkem)

Vim :  Qpm = —brm(es + f2) + brmlerem + frfm) + Grm(erfm — frem)

Vkm : |Pkm|2+ ‘ka|2 < Ukm

Vk: Ppno< N Py, < PP
km € 0(k)

Vk: QP < Y Qe < QP
km e §(k)

Vi - ‘/kmin < 62 + fl? < ‘/;cmax,

Vk: Cpo= Fe|l > Pun| + Gi| D Qim

Here, F}, Gy are quadratic functions for each k. Many possibilities, all structurally similar.



Optimal power flow problem in rectangular coordinates, simplest form

Variables:
e Complex voltages er + 3 fr, power flows Py, Qrm, auxiliary variables

Notation: For a bus k, d(k) = set of lines incident with k; V = set of buses

Basic problem

min Z Ch

keV
s.t. Vkm : Pin, = gkm(ez + fl?) - gkm(ek’em + fkfm) + bkm(ek’fm - fkem)

Vim | Punl® + |Qiml* < Ukm

Vk: PP < N Py, < PR
km € 0(k)

Vk: QP < Y Qe < QP
km e (k)

Vi - ‘/kmin < 6% + fl? < ‘/;cmax’

Here, F}, Gy are quadratic functions for each k. Many possibilities, all structurally similar.

These are QCQPs, quadratically constrained quadratic programs, with an underlying graph structure.



QCQPs

min "M% + 2clz + d (6a)
st. Vkm: o Mz + ZCZ-TZ' +d;, > 0, 1 <i<m, (6b)
r e R" (6¢)

Each matrix M* symmetric.
This description includes linear inequalities, bounds on individual variables, quadratic/linear equations.



QCQPs

min "M% + 2clz + d (7a)
st. Vkm: o Mz + 20?.75 +d;, > 0, 1 <i<m, (7h)
x € R". (7c)
Reformulation
observation: T M'z + 2cfz = (1 z7) 0 ¢ ) = (1 7)) !
' v c;, M?* T T
definition: for matrices A, B, AeB = ) .a;;jb;
so for vector y and matrix A, yTAy = Aeyy’
So QCQP can be rewritten as:
Q* = min M e X + d (3a

st. Yekm: M'eX + d > 0, 1<i<m, (

08
o
S—" ~—

X e ROFDX0HD X (0 of rank 1. (8¢
The semidefinite relaxation of this problem is:
Q = min M'eX + d (9a)
st. Vkm: MeX +d > 0, 1<i<m, (9b)
X e RiHDx(Hl) 0 X . (9¢)

Q < @



The critical observation

e Lavaei and Low, 2011: the SDP relaxation of AC-OPF frequently is
very tight

e This spurred much research

e Jabr, Hiskens and Molzahn, others



The critical observation

e Lavaei and Low, 2011: the SDP relaxation of AC-OPF frequently is
very tight

e This spurred much research

e Jabr, Hiskens and Molzahn, others

e Under constrained conditions, the SDP relaxation can be weak



The critical observation

e Lavaei and Low, 2011: the SDP relaxation of AC-OPF frequently is
very tight

e This spurred much research
e Jabr, Hiskens and Molzahn, others
e Under constrained conditions, the SDP relaxation can be weak

e The SDP relaxation can prove unsolvable for larger grids



The critical observation

e Lavaei and Low, 2011: the SDP relaxation of AC-OPF frequently is
very tight

e This spurred much research

e Jabr, Hiskens and Molzahn, others

e Under constrained conditions, the SDP relaxation can be weak
e The SDP relaxation can prove unsolvable for larger grids

e Factoid: there are polynomial-time algorithms for SDP, but require many
assumptions

e There is no exact algorithm for SDP



The critical observation

e Lavaei and Low, 2011: the SDP relaxation of AC-OPF frequently is
very tight

e This spurred much research

e Jabr, Hiskens and Molzahn, others

e Under constrained conditions, the SDP relaxation can be weak
e The SDP relaxation can prove unsolvable for larger grids

e Factoid: there are polynomial-time algorithms for SDP, but require many
assumptions

e There is no exact algorithm for SDP

e Lavaei, Low, Hiskens-Molzahn:
when the underlying network has low tree-width, the SDP relaxation
can be solved much faster
why: standard SDP solvers can leverage low tree-width

e What exactly is tree-width?
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e For cach vertex t of T, Q;is asubset of V(G). These subsets satisfy
the two properties:

(1) For each vertex v of G, theset {t € V(T') : v € Q:} isasubtree
of T, denoted T,.

(2) For each edge {u,v} of G, the two subtrees Ty, and T, intersect.



Tree-width
Let G be an undirected graph with vertices V' (G) and edges E(G).

A tree-decomposition of G is a pair (T, Q) where:
e T"is a tree. Not a subtree of G, just a tree

e For cach vertex t of T, Q;is asubset of V(G). These subsets satisfy
the two properties:

(1) For each vertex v of G, theset {t € V(T') : v € Q:} isasubtree
of T, denoted T,.

(2) For each edge {u,v} of G, the two subtrees Ty, and T, intersect.
e The width of (7, Q) is maxcr Q] — 1.
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width =2
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Tree-width
Let G be an undirected graph with vertices V' (G) and edges E(G).

A tree-decomposition of G is a pair (T, Q) where:
e T"is a tree. Not a subtree of G, just a tree

e For cach vertex t of T, Q;is asubset of V(G). These subsets satisfy
the two properties:

(1) For each vertex v of G, theset {t € V(T') : v € Q:} isasubtree
of T, denoted T,.

(2) For each edge {u,v} of G, the two subtrees Ty, and T, intersect.
e The width of (7, Q) is maxcr Q] — 1.

WA ||

— two subtrees Ty, Ty, may overlap even if {u, v} is not an edge of G



History

Fulkerson and Gross (1965), binary packing integer programs

[P = max c'x (10a)
st. Axr < b, (10b)
r e {0,1}" (10c)

Here, A is has 0, 1-valued entries. Idea: use the structure of A.

The intersection graph of A, G4, has:

e A vertex for each column of A.
e An edge between two columns g, k if thereisarow 2 with a;; # 0, a;, # 0.

1 2 3 4 5




History

Fulkerson and Gross (1965), binary packing integer programs

[P = max c'z (11a)
st. Axr < b, (11Db)
r e {0,1}" (11c)

Here, A is has 0, 1-valued entries. Idea: use the structure of A.
The intersection graph of A, G4, has:

e A vertex for each column of A.

e An edge between two columns 7, k if there is arow ¢ with a;; # 0, a;x # 0.
1 2 3 4 5

—
o

Each row of A induces a clique of G 4.



History

Fulkerson and Gross (1965), binary packing integer programs

IP = max ¢z (12a)
st. Az < b, (12b)
r €{0,1}" (12¢)

Here, A is has 0, 1-valued entries. Idea: use the structure of A.
The intersection graph of A, G4, has:

e A vertex for each column of A.

e An edge between two columns j, k if there is a row % with a;; # 0, a;; # 0.

Theorem. If G4 is an interval graph, then

[P=LP = max c'z (13a)
st. Ax < b, (13b)
xr € 0, 1]". (13c)

(so IP = value of its continuous relaxation).

A graph G = (V, E) is an interval graph, if there is a path P, and a
family of subpaths P, (one for each v € V'), such that

e For each pair of vertices uw and v of G, we have {u,v} € E
whenever P, and P, intersect.

e The largest clique size of G is max,cp |[{v € V : p € P,}|.

(The maximum number of subpaths that simultaneously overlap anywere on P)



IP = max c'z (14a)

st.  Ax < b, (14b)
re{0,1}" (14c)

The intersection graph of A, G4, has:

e A vertex for each column of A, an edge between two columns j, k if there is a row ¢ with a;; # 0, a; # 0.

Definition: (Gavril, 1974) A graph G = (V, E) is chordal, if there

ex1sts
e A tree T, and a family of trees P, (one for each v € V), such that

e For each pair of vertices u and v of G, we have {u,v} € E
whenever T, and T, intersect.

e The largest clique size of G is maxer |[{v € V : t € T,}|.

(The maximum number of subtrees that simultaneously overlap anywere on T')

(equivalent: a graph is chordal iff every cycle of length > 3 has a chord).



Contrast with tree-decompositions

A tree-decomposition of G is a pair (T, Q) where:

e 1" is a tree. Not a subtree of G, just a tree.

e For each vertex tof T, Qy is a subset of V(G). These subsets satisfy
the two properties:

(1) For each vertex v of G, theset {t € V(T') : v € Q:} isasubtree
of T, denoted T,.

(2) For each edge {u,v} of G, the two subtrees Ty, and T, intersect.
e The width of (7, Q) is maxcr Q] — 1.

WA ||

20 o ° °

— two subtrees Ty, Ty, may overlap even if {u, v} is not an edge of G

So: A graph G has a tree-decomposition of width aw iff there is a chordal
supergraph of G of clique number w + 1.



IP = max c'z (15a)

st.  Ax < b, (15b)
re{0,1}" (15¢)

The intersection graph of A, G4, has:

e A vertex for each column of A, an edge between two columns j, k if there is a row ¢ with a;; # 0, a; # 0.

Definition: (Gavril, 1974) A graph G = (V, E) is chordal, if there exists
e A tree T, and a family of subtrees P, (one for each v € V), such that
e For each pair of vertices w and v of G, we have {u,v} € E iff T, and T, intersect.

e The largest clique size of G is maxer |[{v € V : t € T, }|.
(The maximum number of subtrees that simultaneously overlap anywere on T')

(equivalent: a graph is chordal iff every cycle of length > 3 has a chord).

Theorem. If G4 is chordal, then

[P=LP=max c'z (16a)
st. Ax < b, (16h)
z € [0,1]". (16¢)

(so IP = value of its continuous relaxation).

Chordal graphs are “nice.” In fact, they are perfect.



Why small tree-width helps

Cholesky factorization of:




Cholesky factorization of:




Chordal supergraph:

Pivoting order: 1, 2, 5,6, 7, 8, 3, 4



Graph Minors Project: Robertson and Seymour, 1983 - 2004

— Tree-width as a measure of the complexity of a graph
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sparsity # small tree-width

d graphs of max deg 3 and arbitrarily high tree-width



Graph Minors Project: Robertson and Seymour, 1983 - 2004

— Tree-width as a measure of the complexity of a graph

e Algorithms community: small tree-width makes hard problems easy (late
1980s)

e Many NP-hard problems can be solved in polynomial time on graphs with
small tree-width:
TSP, max. clique, graph coloring, ...



Graph Minors Project: Robertson and Seymour, 1983 - 2004

— Tree-width as a measure of the complexity of a graph

e Algorithms community: small tree-width makes hard problems easy (late
1980s)

e Many NP-hard problems can be solved in polynomial time on graphs with
small tree-width:
TSP, max. clique, graph coloring, ...

e Fellows & Langston; Bienstock & Langston; Arnborg, Corneil & Proskurowski;
many other authors

e Common thread: exploit tree-decomposition to obtain good algorithms

e So-called “non-sequential dynamic programming”



partial free—decomposition
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partial free—decomposition



<«— ' boundary’

partial tree—decomposition



<«— optimize in partial tree-decomposition

subject to ’ boundary conditions’

enumerates several cases

partial tree—decomposition
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Graph Minors Project: Robertson and Seymour, 1983 - 2004

— Tree-width as a measure of the complexity of a graph

e Algorithms community: small tree-width makes hard problems easy (late
1980s)

e Many NP-hard problems can be solved in polynomial time on graphs with
small tree-width:
TSP, max. clique, graph coloring, ...

e Fellows & Langston; Bienstock & Langston; Arnborg, Corneil & Proskurowski;
many other authors

e Common thread: exploit tree-decomposition to obtain good algorithms

e So-called “non-sequential dynamic programming”

— Can we do the same for OPF ?



Theorem: Given an instance of AC-OPF on a graph with a tree-decomposition
of width w, and m buses, and 0 < € < 1,

there is a linear program LP such that:
(a) The number of variables and constraints is O(2%“ wn eloge™).

(b) An optimal solution to LP solves AC-OPF, within tolerance €.



Yk :

Yk :

Yk :

More generic statement for AC-OPF

Pem = gem(ei + f7) — gem(erem + fufm) + bem(erfn — frem)
Qk:m — _bkm(ez + f]?) + bkm(ekem + fkfm) + gkm<€k¢fm — fkem)

P.= Y P PM < B < Phx
km e (k)

Qv = Y Qum < Qr <P
km e o(k)

(‘/;cmin)2 < ez + fl? < <‘/k:max)2

Cr = Fyo(PrQrer fr) + Y Him(Pom, Qroms ks frs €ms fin)
kmed(k)

Here, the Fjy and Hyp,, are quadratics.



A generalization: graphical QCQPs (abridged)
Inputs:
(1) An undirected graph H.

(2) For each vertex v of H aset J(v), and for 3 € J(v) there is a real
variable ;.
Write V = U’UEV(H)J(U)°

(3) For each edge {v, u} denote by " the vector of all ; for 3 € J(v) U J(u).

(4) For each vertex v, and each edge {v, u} afamily of quadratics pﬁ, , (")
for k=1,...,N(v).

(5) A vector ¢ € RY.



A generalization: graphical QCQPs (abridged)
Inputs:
(1) An undirected graph H.

(2) For each vertex v of H aset J(v), and for j € J(v) there is a real variable x;.
Write v == UveV(H)J(U)-

(3) For each edge {v,u} denote by x”* the vector of all =, for j € J(v) U J(u).

(4) For each vertex v, and each edge {v,u} a family of quadratics pf (%) for k=1,..., N(v).

(5) A vector c € RY.

Problem:
(GQCQP): min ¢z
subject to: Z Pour(x”) >0, veV(H), k=1,...



A generalization: mixed-integer graphical QCQPs (abridged)
Inputs:
(1) An undirected graph H.

(2) For each vertex v of H aset J(v), and for 3 € J(v) there is a real
variable ;.
Write V = UUEV(H)J(U)°

(3) For each edge {v, u} denote by a¥* the vector of all ; for 3 € J(v) U J(u).

(4) For each vertex v, and each edge {v, u} afamily of quadratics pﬁ, (")
for k=1,...,N(v).

(5) A vector ¢ € RY.

(6) A partition ¥V = Vz U Vj.



Problem:

(MGP): min ¢’z
subject to: Z Pouir(@”) > 0, veV(H), k=1,...,N(v)
ued(v)

0<z;, <1 VjeVp z;=0o0rl VjecVs.



(1) An undirected graph H.

(2) For each vertex v of H aset J(v), and for j € J(v) there is a real variable x;.
Write VYV = UveV(H)J('U)-

3) For each edge {v,u} denote by x* the vector of all x; for j € J(v) U J(u).
4

5) A vector ¢ € RV.

6) A partition V = VzU Vg.

(3)
(4)
(5)
(6)

(MGP): min ¢’z

subject to: Z Pour(z™) >0, veV(H), k=1,...,N(v)

0<uz; <1 VjeVp a2 =00rl VjecVy.

For each vertex v, and each edge {v,u} a family of polynomials p% (x**) for k=1,..., N(v).

Theorem: Given an instance of M GP on a graph with a tree-decomposition

of width w, there is an equivalent instance of MGP on a graph
e With tree-width < 2w + 1

e Of maximum degree 3.

Remark. If we start with an instance of AC-OPF', the equivalent problem

is no longer an AC-OPF problem.



Approximation (Glover, 1975)(abridged)

Let x be a variable, with bounds 0 < & < 1. Let 0 < v < 1. Then we
can approximate

Tr = Zle 2 %y,

where each y; is a binary variable. In fact, choosing L = [log,~y '],
we have

r < Zf:1 27'y; < x4 7.

So: given an instance of M G P, approximate each continuous variable x;
in this manner.



Theorem: Consider an instance Z of problem MGP, with mn variables.
Then there is another instance, B of MGP, with

(1) B is defined on the same graph as Z.

(2) all variables in B are binary.

(3) For each continuous variable @; of Z, we now have log, J* loge™*

binary variables used to approximate ;.

(4) Solving B to exact optimality yields a solution to Z within tolerance e.

J* = size of largest set J(v). (AC-OPF = J* = 2)
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(2) An equivalent mixed-integer, graphical polynomial optimization problem
on a graph with a tree-decomposition of width O(w) and degree < 3.



Review

(1) A mixed-integer, graphical polynomial optimization problem on a graph
with a tree-decomposition of width w.

|

(2) An equivalent mixed-integer, graphical polynomial optimization problem
on a graph with a tree-decomposition of width O(w) and degree < 3.

|

(3) An all-binary, graphical polynomial optimization problem on the same

graph which is equivalent to the problem in (2) within tolerance €. The

sets J(v) have grown by a factor of log, J* log, e~ 1.



Ancient History of this Talk

Fulkerson and Gross (1965), binary packing integer programs
IP = max c'z (21a)

st. Az < b, (21b)

z € {0,1}" (21c)

Here, A is has 0, 1-valued entries. Idea: use the structure of A.

The intersection graph of A, G4, has:

e A vertex for each column of A.
e An edge between two columns j, k if there is a row ¢ with a;; # 0, a;; # 0.

Each row of A induces a clique of G 4.



Review

(1) A mixed-integer, graphical polynomial optimization problem on a graph with a tree-decomposition
of width w.

(2) An equivalent mixed-integer, graphical polynomial optimization problem on a graph with a tree-
decomposition of width O(w) and degree < 3.

(3) An all-binary, graphical polynomial optimization problem on the same graph which is equivalent

to the problem in (2) within tolerance €. The sets J(v) have grown by a factor of log, J* log, €.

(4) Corollary. The intersection graph of the problem in (3) has a tree-decomposition of width at
most

O(w J*log, J* log, €7 1)

Note: There are two graphs. The initial graph used to define the problem, and the intersection graph
for the constraints in (3).



Piece de Résistance

Theorem. Given an all-binary problem on m variables and whose inter-
section graph has a tree-decomposition of width £k, then there is an exact
linear programming representation using

O(2Fn)

variables and constraints.

Construction similar to Lovasz-Schrijver, Sherali-Adams, Lasserre, Bienstock-Zuckerberg
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Piece de Résistance

Theorem. Given an all-binary problem on m variables and whose inter-
section graph has a tree-decomposition of width £k, then there is an exact
linear programming representation using

O(2%n)

variables and constraints.

Construction similar to Lovasz-Schrijver, Sherali-Adams, Lasserre, Bienstock-Zuckerberg

(A) A mixed-integer, graphical polynomial optimization problem, with IN
variables, on a graph with a tree-decomposition of width w.

J* = size of largest set J(v). (AC-OPF J* = 2)

|

(B) A linear program that solves the problem in (A) within tolerance e,
of size

O (20«7 o J* eI N)



Should we able to do better?

Probably.

But.

e There are trivial AC-OPF problems where there is a unique feasible solu-
tion and it is irrational.
Under the bit model of computing we cannot produce an “exact” answer.

a 1more

)

e AC-OPF is weakly NP-hard on trees. Lavaei and Low (2011)
recent proof by Coffrin and van Hentenryck.

e AC-OPF is strongly NP-hard on general graphs. A. Verma (2009). So no
strong approximation algorithms exist unless P = NP.



Optimal Resilient Distribution Grid Design

Russell Bent

Joint work with Scott Backhaus, Brent Daniel, Harsha Nagarajan,
and Emre Yamangil (see poster)
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Definition of Resilience

Presidential Policy Directive - Critical Infrastructure Security and
Resilience

“The ability to prepare for and adapt to changing conditions and
withstand and recover rapidly from disruptions. Resilience includes the
ability to withstand and recover from deliberate attacks, accidents, or
naturally occurring threats pr incidents.”
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Problem Overview: Our Goals

Develop new tools, methodologies, and

algorithms to enable the design of resilient power

distribution systems—utility scale

Hardening/Resilience options
» Asset hardening
« System design ¥
« System operations
* Repair scheduling

0.8 A

« Emergency operations 0.6
0.4 -
Flexibility for the user ool

 User’s base network model

F
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* User-defined resilience metrics A
» User suggests upgrades

» User-defined costs

+ User-defined threat and scenarios

0.10

Capabilities
» Assess current resilience posture

0.20
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« Optimize over user-suggested upgrades to improve

resilience considering budget
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Problem Overview

Updated System < Network Design <
Model Optimization
Response
Optimization
System Fragility i Damaged N . 3 Restoration > Compute
Model Model System Model Operations and Recovery Metrics

I /
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Resilience Design Process Flow—System Model

Flexibility for the user
User’s base network model
User-defined resilience metrics, e.g.
critical load service
User suggests upgrades
User-defined costs
User-defined threat and scenarios
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Resilience Design Process Flow—Direct Impacts
Flexibility for the user
User’s base network model

Wind drag on cable and ice
/’\ create bending torques
User-defined resilience metrics, e.g. A

critical load service ——
User suggests upgrades
User-defined costs
User-defined threat and scenarios

Weight of cable and ice
create compressive stress

50
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Source: Y. Sa, Reliability analysis of electric distribution lines

Ph.D. dissertation, McGill University, Montreal, Canada, 2002
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Resilience Design Process Flow—Secondary

"y

_ Ser\/ed
Nerl-crltlca

cmo,r exam p’r"’_f'_“compute

Flexibility for the user
User’s base network model
User-defined resilience metrics, e.g. critical
load service
User suggests upgrades
User-defined costs
User-defined threat and scenarios

Capabilities
Assess current resilience posture

Optimize over user-suggested upgrade to
Improve resilience considering budget
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Resilience Design Process Flow—Design Network

* Hardening/Resilience options * Capabilities
— Asset hardening — Assess current resilience
— System design posture
— System operations — Optimize over user-suggested
— Repair scheduling upgrade to improve resilience
— Emergency operations considering budget
Updated System | Network Design |
Model D Optimization |~

D

System Fragility | Damaged > o . Compute
> > > t — —>
Model 4 Model System Model perations Metrics
A \ A
\ /1
/\ \ V4
~ 7

Event
° LOS AI1 Base
NATIONAL LZ Model Distribution

Data-Driven Utility
Damage Model Priorities
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Resiliency Model Details

« Distribution power system
» Power lines, loads, generation

« Hardening and Resilience
Options

 Distributed generation

A create bening torques
« 3-phase or 1-phase interties '
underground

« Add switches to:
» Reconfigure circuits

« Above ground or l | l S AT =l

Weight of cable and ice
create compressive stress

50

Fragility--CSA-C22.3 No. 1-M87, pole type DF-G2-80
~20 poles/mile 100 mph

~
]

~
o

 Shed circuits and/or loads

[
o

« Harden existing components

Wind Speed (nmvs)
[ (2]
(5] o

N
=]

 Reduce damage

-
v
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0 5 10 15 20 25 30
Ice Accumulation (mm)
¢ LUD MIali v Source: Y. Sa, Reliability analysis of electric distribution lines
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Resiliency Model Details

« Damage Scenarios
» Historical data
* Probability distribution

« Operating and Resilience

Wind drag on cable and ice i
A create bending torques 1

Constraints
» Radial operations _.__al mmmmmm
« Load satisfaction l A T

Weight of cable and ice
create compressive stress

e Critical and non-critical load

50

Fragility--CSA-C22.3 No. 1-M87, pole type DF-G2-80

¢ ObJ eCt|Ve 45 | ~20 poles/mile 100 mph
 Minimize cost g —
-g 0.05/mile
‘% I
2 |
£ op | O-0Vmile
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Ice Accumulation (mm)

° LUD MIaliivd UNCLASS|F Source: Y. Sa, Reliability analysis of electric distribution lines
NATIONAL LABORATORY Ph.D. dissertation, McGill University, Montreal, Canada, 2002
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Optimization Model

minimize Zl-]-EE CijXij +ZUEE KijTij +ZiEN ke p; ¢

s
st X <x;,7 St < tu'

_xleQq - Z l_] = UIQ
kepij

1]0 +x1]1 = xl]

_(1 _Tz])sz —Zkep”ft = (1_.[5

Key Features

Kk
Z; + Dien Hilli + Xjje Qijtij

S<zFuf <y

8 Zkepi‘j fijs <fk"s Zkepi'jfij
Yoo fpyl 7Y |pij]
zF < MFy;
xj; = t;; when x is damaged
ks _ ,,s gk
I° =yid;

sk ks kt
09" =z + g
ks ks _
gi _li _Z]EN =0
0 <z’ <uizf
-l -
Lijes (xij +(1 —r,-]-)) s Is|-1
s s =S s —S
i >x,-j +Tij -1, xij SXU

ks k
ZiECL,kEpi li 2A'Eiea.,kem di

ZiEN\L,kEPi llks =04 z:l'eiv\l-JcEPi dtk
x,y,T,ut € {01}

Least cost design for a set of
scenarios

Three-phase unbalanced real power
flows

Enforces radial operations
Enforces phase balance tolerance

Discrete variables for load shedding
(per scenario), line switching (per
scenario), capital construction (first
stage)

Relaxes unbalanced 3 phase power
flows to a multi-commodity flow

Assumption/Justification: Radial
operations + Initial network is voltage
feasible, upgrades tend to move
loads closer to generation, which
improves voltage and lowers line
loading.




Optimization Model

inimi kk
minimize ZijEE Ci]'xl‘}‘ +Zi,jEE Kijtif + ZiEN.kEZJ[ Cl Zf + ZieNﬂjui + ZijEE aijti}'

st X <x;,7; STt < Gz '“<z RTHEETR

Minimize expansion cost
lJOQ'] = Z L_] = 1}10
kepij

x5
1]0 +xl}1 = ij

_(1 _Tl:sj) Ql] —Ekepuft = (1_715;')01’;

k k
—Bii M k's _ Zkepy [if - Zkepy 1l
R T -’y ol =P byl

xgj = ts when x is damaged

ks _ .,s jk
I® =yid;
0 < g% < zks kt
Ji zi~ + g
ks ks ks _
g — Z]ENfz =0
0 <z <uzf
Zijes (xu + (1 Tij)) < Is|-1
s s =5 s -5
Tij 2xU+T,]—1, xUSxU
ks k
ZiECL,kEpi li = AZiECL,kEpi di

k k
Yien\pkep; li . 2V Dien\pkep; i
x,y,T,ut € {01}

uperatea py LOS AIAMOS Nauonal Security, LLL Tor NNSA /N .

/A

<
)
Y

| &
T
g;.,



Optimization Model

« s . k k
minimize Y;iep CijXij + X jer KijTij T Xienkep; St 2 T Dien Hilli + Xijep Aijtij

ks k s
S.t. [ xl] <.XU Tl] —_— Tl]’ tl] tl]’ < Z ul S u[

x50 < D [k x5,0k
Kepy Auxiliary variables for linking
+ < x5 :
Xijo * Xij1 < Xij first and second stage. Useful

—(1 =15) Qf < Sep, S = (1-75)QF for decomposition

ks ks ks
Zkepi.f fij Ig _ zkepu fij Zkepll fu

k
Ipijl _f” |Pij| =Y ’Pu|

—Bij
xf} = ts when x is damaged
ks _ k
I = y?d;
K k
0<gi" <z +g,
k ks —
gis_lis Z]ENfz *=0
0<z" <u'zf
Sijes (X5 + (1 =7)) < Isl—1
s s =5 s =5
Tij 23(1] +TU - 1, xij qu

ks ‘ k
ZiECL,kEpi li EAZiECL,kep'di

k
ZIEN\L kepl = yzleN\L kep; d'

x,y,T,ut € {01}
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Optimization Model

- . - k k
minimize Y;iep CijXij + X jer KijTij T Xienkep; St 2 T Dien Hilli + Xijep Aijtij

ks k s
st X <xj,7 STt S Gz Sz,u S

/ UOQU - Z l] = ulQ \

kepij

x5
1]0 +x1}1 = ij

~(1 =) @ = Buep f* = (1-75)0} . . .
\_ S e 7 Line capacity constraints.

Capacity is 0 when line is
unavailable or open.

ks ks ks
Zkep ; fij rs _ Zkepyfij Ziep; ; Jij

k
|pijl _f” lpijl =Y oyl

—=Bij

X7 = ts when x is damaged

Y
I = yidf

sk ks

09" =z +&

ks ks ks
g — Z]ENfz =0
0<z" <u'zf
Sies (T + (1 =) < Isl-1

s s =5 s -5
Tij 2JCU+TU—1, xiijij

ks ‘ k

ZiECL,kEpi li = AZIECL,RED' di

K
Lien\ikep li 2V Dien\ekep; i

x,y,T,ut € {01}

vperaiea py LOS Alamos Natonal Security, LLU T0r NNSA )/
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Optimization Model

e K,k
minimize Y;ieg CijXij + Xi jer KijTij T Lienkep; Si Zi T Dien Hilli + Xijep ijtij

s.t. X5 TS Xij T} <tij,tijtU, ks<2k u; < u;

lJOQU = Z L_] = 1}10

kepij

x5
1]0 +xl}1 = ij

_(1 _Tl:sj) Ql] —Ekepuft (1_715;')01’;

ks ks
_ﬁ“z:kepi'.fij <f_h_:’s _ Zkepufij __zkEpr”
Uyl U ol = PU ™ oyl
x{; = t;; when x is damaged
ks _ K
1i =Ji d

0<gsk <st+glg(+

g — U~ Sjen fi* =0

0 <z <uzf

Sies (% + (1 =) < Isl-1

s s =5
Tij 2XU+T,]—1 U<xu

ks k
ZiECL,kEpi li = AZiECL,kEpi di

k k
Yien\pkep; li . 2V Dien\pkep; i
x,y,T,ut € {01}

vperaiea py LOS Alamos Natonal Security, LLU T0r NNSA

Phase imbalance tolerance

T YA =%
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Optimization Model

e K,k
minimize Y;ieg CijXij + Xi jer KijTij T Lienkep; Si Zi T Dien Hilli + Xijep ijtij

s.t. X5 TS Xij T} <tij,tijtU, ks<2k u; < u;

lJOQU = Z L_] = 1}10

kepij

x5
1]0 +xl}1 = ij

_(1 _Tl:sj) Ql] —Ekepuft = (1_715;')01’;

k k
—Bii M k's _ Zkepy [if - Zkepy 1l
R T -’y ol =P byl

[xgj — ts when x is damaged
T Links damaged lines with
hardening variables

0 <gsk <st+glg(+

g = 1 = S i =0

0 <z <uzf

Sies (% + (1 =) < Isl-1
‘risj 2xfj +?,-sj —1,xfj sffj
ZiECL,kEpi llks = A ZiECL,kepi dlk

k k
Yien\pkep; li . 2V Dien\pkep; i
x,y,T,ut € {01}

vperaiea py LOS Alamos Natonal Security, LLU T0r NNSA



Optimization Model

inimi Kk k
minimize ZijEE Ci]‘xl‘j +Zi.j€E Kijri]‘ + ZiEN.kEpi Cl Zi + EieNﬂjui + ZifEE aij‘tij

st x§<x;,t5 <t < t;,2° <zfuf <y

ij ] ij = i
UOQU = Z l] = ule
kepij
x5
1]0 +xl}1 = ij

_(1 _Tt:sj) Ql] —Zkepuft (1_T1§)Qz’j

ks
Ziep, ; Tif

k
s zkem-j fijs - ZkEpU fu
lpgj|  — Y lpi;l

k
—Bij < fij

o

xgj = ts when x is damaged

G
= ,

0<gsk<zks+gl{c

Load switching

B~ 1 = Sjen i =0

0< zl-"s <uizf

s s =5
Tij 2x,]+'[,]—1 U<xu

ks k
Yiecrkep; i 2 A Diectrep; di

k k
Yiemukep i 2V Dien\rkep; i
x,y,T,ut € {01}
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Optimization Model

inimi Kk k
minimize ZijEE Ci]‘xl‘j +Zi.j€E Kijri]‘ + ZiEN.kEpi Cl Zi + EieNﬂjui + ZifEE aij‘tij

st xf <, T ST th < 4z <zfouf <y

ij ij iy = ijr
leQl] = Z l_] = l}lQ
kepij
x5
1]0 +xl}1 = ij

_(1 _Tt:sj) Ql] —Zkepuft = (1_T1§)Qz’j

ks ks
zkepi.'fij I'g zkepi,j fij ZkepuT fu

k
—Bij < fij

;] lpijl  — ) lpi;l

xgj = ts when x is damaged
I = yidy

sk ks kt
[0<g <z +g
ks ks ks _
g — Z]ENfz =0
0 <z <uzf
Yijes (xU +(1 rij)) < |s|-1
s s =5 s -5
TU 2x,]+'[,]—1, xUSxU

ks k
Yiecrkep; i 2 A Diectrep; di

k k
Yiemukep i 2V Dien\rkep; i
x,y,T,ut € {01}
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Optimization Model

minimize ZUEE CijXij +Z,-_jEE KijTij +ZEEN_kEpi $iz + Nien Hilli +Zi]-EE a;jjti;

s ks k s
s.t. xl-] < Xxjj, ‘l'” STl S pZi SZ;,U; S Y
leQl] = Z l] = 1}10
kepij
x5
1]0 +xl}1 = ij

_(1 _Tt:sj) Ql] —Zkepuft (1_T1§)Qz’j

_ﬁ ‘ ZREP[.'filj'S - f.h_frs _ ZREIJL}- fi}j-s - zkEpt} f”
Y |P£j| -y |Pij| ="y ’Pu|
xgj = ts when x is damaged
1%-(5 =y dk
0 <gsk <st+glgc+
]L
[g!‘s — U = Sien fif = 0J* Nodal flow balance

0 <z <uzf

Sies (% + (1 =) < Isl-1

s s =5
Tij 2x,]+'[,]—1 U<xu

ks k
ZiECL,kEm li z}tziECL,kepi di

k
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Optimization Model

N K,k
minimize Y;ieg CijXij + Xi jer KijTij T Lienkep; Si Zi T Dien Hilli + Xijep ijtij

st X <x;,t <1, th <tz 7P < zFuf <y

lJOQU = Z L_] = 1}10

kEpij

x5
1]0 +xl}1 = ij

_(1 _Tl:sj) Ql] —Ekepuft = (1_715;')01’;

k k
—Bii M k's _ Zkepy [if - Zkepy 1l
R T -’y ol =P byl

xf} = ts when x is damaged
ks _
I¥s = ysd¥

0<gsk <st+glg(+

8 — 1" = Zjen fifF =0 Links generation construction

=i <uzm}— | and capacity
Zijes (xu + (1 ?ij)) < [s|—-1

s s =5 s -5
Tij 2x11 +T,] - 1, xij qu

ks k
ZiECL,kEpi li = AZiECL,kEpi di

ks k
Yienmukep; i 2V Lien\ukep; i

x,y,T,u,t € {0,1}

vperaiea py LOS Alamos Natonal Security, LLU T0r NNSA



Optimization Model

e K,k
minimize Y;ieg CijXij + Xi jer KijTij T Lienkep; Si Zi T Dien Hilli + Xijep ijtij

st x5 Sx;,T STt Stz 7P < zFuf <y

lJOQU = Z L_] = 1}10

kepij

x5
1]0 +xl}1 = ij

_(1 _Tt:sj) Ql] —Ekepuft = (1_T1§)QS

ks ks
_ﬁij M < fih_:’s _ zkep[,j Tij < By Zk&pu fu
Ipijl J |pij] Ipijl

xgj = tS when x is damaged

I = yidy
0 <gsk <st+glg(+
g — I~ Tjen fiF =0

0< zl-"s <uizf

s S 4 =5 s g
T 2X; T - L X S X

ks k
ZiECL,kEpi li = AZiECL,kEDi di

ks k
Yienmukep; i 2V Lien\ukep; i

x,y,T,ut € {01}

vperaiea py LOS Alamos Natonal Security, LLU T0r NNSA
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Optimization Model

ij =

sk s k
110011 = Z ij = X0

kepij

st X <x;,T STt <tz 7] < zFuf <y

x5
1]0 +x1]1 = ij

_(1 _Tt'sj) QU = Ekepufz (1_T1S;)Qtlj

k
ﬂ Zkepi.f fijs < fk’s zkepu fijs Zkepllfu
U pyl -y lpijl =Y oyl
xf} = ts when x is damaged
ks _ k
I = y?d;

0<g3k<2ks+gl
8 — I = Njen fi =0

0<z" <u'zf

ZijEs (xu + (1 ?ij)) =

s

Is| =1
s p— s -]
2 X + T — 1, X < X5

ks k
Yiecrkep; i 2 A Diecrkep; di

lk

K
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x,y,T,ut € {01}
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Algorithm Overview

Exact Algorithms

« CPLEX 12.6—n0 parameter tuning
« Difficult problem — 50-60k binary variables

« Decomposition
* Benders, Dantzig-Wolfe, Scenario

Heuristics

« Greedy
» Union of single scenario solutions
« Based on industry algorithms

« Variable Neighborhood Search
* Ruin and Recreate—hybrid of exact methods and local search
« lteratively relax variable assignments (ruin)

« Use exact method to find optimal variable assignments for relaxed variables, given
the fixed partial solution (recreate)

A
5 L?s Alamos

NATIONAL LABORATORY UNCLASSIFIED

EST.1943

Operated by Los Alamos National Security, LLC for NNSA I YA I =g
INASE




Scenario Based Decomposition

Solve over all

ResilientDesign(S)«<— | damage scenarios

s « chooseScenario(S)<——| select 1 scenario

g = solveMIP(s) S——— | Design network for

- while (~F easible(o, S \s)) damage scenario 1

Is solution feasible for s = s U chooseScenario(S\s)

remaining scenarios
J / o — solveMIP(s)

If NOT, add an infeasible \ Find a new solution
scenario to the set under
consideration

Ilterate until solution is

feasible for all scenarios

/\ Outperformed other decomposition
) strategies—second stage influences

» Los Alamos feasibility, not optimality. Continuous
NATIONAL LABORATORY JNebAssIFIED investment variables also adds difficulty

EST.1943
Operated by Los Alamos National Security, LLC for NNSA .Y I a3
INAVSS



Variable Neighborhood Search

ResilientDesign(S, maxTime, maxRestarts, maxIterations)

[ ol? « Solve(P'P), 0" « o', restart « false ]v\
Solve the LP relaxation

while (t < maxTime and i < maxRestarts)

je< O

nelx€X:lo(x) —ol?(x)] # 0|

] < (my, 7y, .. tp) €EX 0 lo*(n;) — 0" (m)| < |o"(Mi41) — 0P (144)|
if (restart = true)

le=i+1
4n
?,k « |X| — step

shuffle(])

else

step «

n
step « E’k « |X| — step

while (t < maxTime and j < maxIterations)
o'« Solve(P(c",](1, ...k))
if (f(6") < f(e9)

o'« a',i « 0,restart « false,j « maxIterations

else
step
T . 3+ 01 . = 7 L. . .
Intuition: LP relaxation guides the
search procedure
» Los Alamos
NATIONAL LABORATORY UNCLASSIFIED
EST.1943
Operated by Los Alamos National Security, LLC for NNSA /N ¥ 'DOZS}



Variable Neighborhood Search

ResilientDesign(S, maxTime, maxRestarts, maxiterations) Count differences between
ol « Solve(P'P), 0" « o', restart « false current best solution and
while (t < maxTime and i < maxRestarts) relaxation

j<0

[ ne|x€X:lo*(x) — ol (x)] # 0]

ey, g, ) €X 20 () — 02 ()] < 10" (iga) — 01 (i)
if (restart = true)

le=i+1

in
step <—7,k « |X| — step

shuffle(])

else
step « g,k « |X| — step

while (t < maxTime and j < maxIterations)
o'« Solve(P(a",](1, ...k))
if (f(e") < f(e)

o'« a',i « 0,restart « false,j « maxIterations

else Intuition: n is a parameter used to
I N Stﬁ control the size of the neighborhood.
Larger differences between the LP
relaxation and the incumbent solution
indicate that a larger neighborhood

» Los Alamos should be considered.

NATIONAL LABORATORY UNCLASSIFIED

EST.1943

Operated by Los Alamos National Security, LLC for NNSA Y
'} VA‘



Variable Neighborhood Search

ResilientDesign(S, maxTime, maxRestarts, maxiterations)
ol? « Solve(P'P), 0" « o', restart « false
while (t < maxTime and i < maxRestarts)
je< O
ne|x€X:lo’(x) —alP(x)] # 0]
[ ] « (my, 15, ---TI|1|) EX:|o"(m;)— ULP(”:'N < |o" (i) — ULP(Tfi+1)| ]
if (restart = true)

le=i+1
4n
step <—7,k « |X| — step
h l - -
| shuffle(J) Order variables by difference
else i
from LP relaxation

n
step « E’k « |X| — step
while (t < maxTime and j < maxIterations)
o'« Solve(P(a",](1, ...k))
if (f(e") < f(e)

o'« a',i « 0,restart « false,j « maxIterations

else

) g . step Intuition: Variables whose assignments
- differ from the LP relaxation have more
potential to improve the incumbent
solution.
» Los Alam
NA?OSNALLAaBORA'gR§ UNCLASSIFIED
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Variable Neighborhood Search

ResilientDesign(S, maxTime, maxRestarts, maxiterations)
ol? « Solve(P'P), 0" « o', restart « false
while (t < maxTime and i < maxRestarts)
je< O
ne|x€X:lo’(x) —alP(x)] # 0]
] ey, Ty, ) € X 20" (1) = 62 ()] < 107 (Wi41) — 02 (74|
if (restart = true)

le=i+1
in
step <—7,k « |X| — step
shuffle(])
else
step « g»" — |X| — step Compute best solution in
while (t < maxTime and j < maxIt tons) nelghborhood J(1 k)

o'« Solve(P(c",](1, ...k))
if (f(e") < f(o)

o'« a',i « 0,restart « false,j « maxIterations

else
. i\ 4. . Step Intuition: Ruin and recreate
» Los Alamos
NATIONAL LABORATORY UNCLASSIFIED
EST.1943
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Variable Neighborhood Search

ResilientDesign(S, maxTime, maxRestarts, maxIterations)

olP « Solve(P'?), 0" « o', restart « false

while (t < maxTime and i < maxRestarts)
j< 0
ne|x€X:lo’(x) —alP(x)] # 0]
] < my, My, myy) € X 20" () — 0P ()| < |07 (41) — 0™ (749)]

if (restart = true)

le—i+1

in
step @?,k « |X| — step

shuffle(])

else
n
step « E’k « |X| — step

while (t < maxTime and j < maxIterations)
o'« Solve(P(c",](1,...k))

if (f(a") < f(o)

o'« d',i « 0,restart « false,j « maxIterations

else
T .3 L1 I . Is 7St€p
Update best solution
» Los Alamos
NATIONAL LABORATORY UNCLASSIFIED
EST.1943
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Variable Neighborhood Search

ResilientDesign(S, maxTime, maxRestarts, maxIterations)

olP « Solve(P'?), 0" « o', restart « false

while (t < maxTime and i < maxRestarts)
je< 0
ne|x€X:lo’(x) —alP(x)] # 0]
] < my, Ty, ) €EX lo* () — o™ ()| < |o"(M41) — 02 (i40)|

if (restart = true)

le—i+1

in
step <—7,k « |X| — step

shuffle(])

else

Intuition: When a better solution is not
found, increase the size of the

while (t < maxTime and j < maxIterations) | neighborhood

n
step <—E,k « |X| — step

o'« Solve(P(a",](1, ...k))
if (f(e") < f(e)

o'« a',i « 0,restart « false,j « maxIterations

else
T . 1 1 I - I Stﬁ
Increase neighborhood size
» Los Alamos UNCLASSIFIED
OperatedEE);WE:); Alamos National Security, LLC for NNSA /N ¥ ‘
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Variable Neighborhood Search

ResilientDesign(S, maxTime, maxRestarts, maxIterations)
ol? « Solve(P'P), 0" « o', restart « false
while (t < maxTime and i < maxRestarts)
je< O
ne|x€X:lo’(x) —alP(x)] # 0]
] < (my, 3, ---Tf|]|) EX:|o"(m;)— ULP(”:’N < |lo"(mi41) — ULP(Tfi+1)|
if (restart = true)

le=i+1
Shuffle ordering after restart

in
step « — ,k « |X| — step

d
shuffle(])

else

n
step « E’k « |X| — step

while (t < maxTime and j < maxIterations)
o'« Solve(P(a",](1, ...k))
if (f(e") < f(e)

o'« a',i « 0,restart « false,j « maxIterations

else
) 4 , step Intuition: Consider different sets of
variables to relax
» Los Alamos
NATIONAL LABORATORY UNCLASSIFIED
EST.1943
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Variable Neighborhood Search

ResilientDesign(S, maxTime, maxRestarts, maxiterations)
olP « Solve(P'?), 0" « o', restart « false
while (t < maxTime and i < maxRestarts)

je< 0

ne|x€X:lo’(x) —alP(x)] # 0]

] « (my, 15, ---Tf|]|) EX:|o"(m;)— ULP(”:’N < |lo"(mip1) — ULP(TTi+1)|
if (restart = true)

le—i+1

' Adjust neighborhood
[ step « %”,k « | X| — step }4—/ pa:ameter%
shuffle(])
else

n
[step <—E,k « |X| — step

while (t < maxTime and j < maxIterations)
o'« Solve(P(a",](1, ...k))

if (f(e") < f(a")

o'« a',i « 0,restart « false,j « maxIterations

else
) 4 , step Intuition: Neighborhood size is based
on differences between LP relaxation
and incumbent solution.
» Los Alamos
NATIONAL LABORATORY UNCLASSIFIED
EST.1943
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Variable Neighborhood Search with Decomposition

Solve over all

ResilientDesign(S)<— | damage scenarios

s « chooseScenario(S)<—— select 1 scenario

g — solveVNS(s) S——— | Design network for

- while (~Feasible(a, S\s)) damage scenario 1

Is solution feasible for s = s U chooseScenario(S\s)

remaining scenarios / o - solveVNS(s)

If NOT, add an infeasible \ Find a new solution
scenario to the set under
consideration

Ilterate until solution is
feasible for all scenarios

A
5 L’ojs Alamos

NATIONAL LABORATORY UNCLASSIFIED
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Test Cases

Two base-model configurations—“Dense Urban” and “Sparse Residential”
Range of damage intensity—Light damage to Heavy damage

Different trade off between 1) distributed generation 2) new interties 3) hardening
Based on IEEE 34 (100 Scenarios, 109 nodes, 148 edges)

# Urban

Transformer
Bus
\ @ ciitical Load it g % i P e . & Source
Lirie IS IR B2 Sl ool % - Potential Microgrid
Potential Microgrid : By s - g Critical Load
() 3-phase 3 Y

0 s 7 7 . . ! Both CaseS . Potential Line
Po!entii;:: 4 : 7 ‘h - Three feedel‘S
S - 5.1 MW of total load

- 2.1 MW of critical load \li .




Assumptions

Distributed generators provide firm generation, e.g. natural gas CHP

Circuits or sections of circuits configured as trees

Loads and/or generators stay on the phases where they were installed

Costs...... (can be modified based on user specifications)
Device | Type Cost Range | Suggested cost Source
Cij overhead 3-phase $60k-5150k/mile $95k/mile State of
Ci overhead 1-phase $40k-$75k/mile $35k/mile Virginia Study on
Ci.j underground 3-phase $40k-$1,500k/mile $500k/mile || Underground Circuits
Ci.j underground 1-phase $40k-$1,500k/mile $100k/mile -
Ki.j automatic, 3-phase, overhead — $15k | Tom Bialek (SDG&E)
Ki.j automatic, 3-phase, underground — $30k -
Ki.j manual, 3-phase, overhead - $7.5k -
Ki,j manual, 3-phase, underground — $20k -
Ki.j automatic, 1-phase, overhead — $10k }
Ki,j automatic, l-phase, undereround — $25k -
Ki,j manual, 1-phase, overhead — S5 -
Ki,j manual, I-phase, underground - $15k -
Gi.j Natural gas CHP variable - $1,500k/MW EIA 2025 Study
Gi.j Natural gas CHP fixed — $500k

Operated by Los Alamos National Security, LLC for NNSA

ra;
NASA




100 Scenarios are sufficient (empirically)

Solution quality doesn’t
change much

N
3]
=]
=]

20004 1 4

Solution changes slightly

1500

1000 [’

o
b=
=]

Optimum Objective Value

oo

\100

40

[
=1

o
(=1

Per Mile Damage Number of Scenarios

w
(=]

N
(=1

o
(=1

Number of Lines Hardened

(==

Residential
Problem

40

Per Mile Damage Number of Scenarios

» Los Alamos
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Algorithm Comparisons

Residential
Problem

CPU time

=
(5]
T

SBD

—_—

Budget

o

01 0.2 0.‘3 014 0.‘5 UTB Of? 0.8 0.‘9
Per Mile Damage

(=]

» Los Alamos

NATIONAL LABORATORY

3600 -

3400 -

GREEDY

3200
3000 -

2800 -

2600 -
SBD
2400 - /\/v
2200 i i i i i i i i i i
0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Per Mile Damage

Gaps widen as
problems become
larger
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Exact vs. Heuristics

Heuristic solution tends

3500 T T
:
. to match exact solution...
2500 € * v
o S
% @ 30~ i
= 2000 =2
o GREEDY § = HARDENED i
= o
GO_J\ 1500 - - 20- 4
8 0
1000 | g 13- ;
pd
10
500
BVNDS © A_LNES /\ /\
DO 0:1 02 0‘3 0.4 . 0‘5 0:5 DIT 0?3 0.9 1 00 0‘1 0‘2 013 0|4 0\5 0\6 0\7 U‘E 0‘9 .
Per Mile Damage ' ' ' Per'MiIe‘Damage ' '
3xﬂd
.
& . with less CPU time
© 2 %20—
E 15 E’ 18+
T 5
o o
1 O 16
w
ks
0.5 E I
' S
3 12+
BVNDS i ‘ Z
DO 01 02 03 04 . 05 06 07 08 09 1
: Per Mlle Damage 100 0!1 Dj2 0.‘3 0!4 . 0‘5 U!S 07 0.8 019 1
° LOS Alamos Per Mile Damage
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Exact vs. Heuristics

3500 T T

3000 -
2500 -
2000

GREEDY

1500

Objective Value

1000

BVYNDS

0 I I I I I I
0 0.1 02 03 0.4 05 0.6 07 08 0.9 1

Per Mile Damage

Why the objective

fluctuations?

35
o
@D
2 we-
2
5= HARDENED
G
L 20- i
QL
o]
£ i5- il
=
=
10
s LINES © SWITCHES
00 0:1 0.2 03 0?4 0?5 0‘6 U‘? U.‘E O‘B 1

Per Mile Damage

3 . . . .
25
-8 22+
©
: % 20+
@
o
£ 2
15 © 45t
3
o @
1 O 16
w
“
o
o 4
05 a
E
E 12
DO 0.1 02 03 0.4 . 05 OIS 07 08 0.9 1
’ Per Mlle Damage 100 0!1 Df2 0.‘3 0!4 0‘5 U!S 07 0.8 019 1
o LOS AlaMmos Per Mile Damage
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Exact vs.

3500

Heuristics

Switches... damage

., Tt raduces the need for
switches to enforce
; «eeny | Fadial operations
2 o0 N %
s /\/—/ SBD £
2 10
" BVNDS 5
DO 01 02 03Pe:."i\m|eufbarnogge DIT 0.8 09 1 0
T+ Timedow
E
5 15
5

* LOS AlaMmOS
NATIONAL LABORATORY
EST.1943

I I i
0.4 05 06 07 08 09 1

o LINES

L
a.1

24

Number of scenarios generated

r
[N}
T

20

L ' 1 I 1
0.2 0.3 0.4 05 [o:3 07 o]

Per Mile Damage

Per Mlle Damage 100 0!1 Dj2 0.‘3 0!4 0‘5 U!S 07 0.8 019 1
Per Mile Damage
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Resilience Criteria: Residential

Per Mile Damage

el
2
[ 0, ‘
T -
% vl
I 40
2 s
e |
— %+
=
O 25
.
o ¢ S
£ ,5L NS "
S0 T . 1
=z 02 T~ 095

04 i

—""09

06 T 5
g W

Per Mile Damage Critical Load Met

» Los Alamos

NATIONAL LABORATORY

Critical load parameter
drives solution more than
system damage... when
system is spread out

5 v
2000 ]

Per Mile Damage

Number of Scenarios Generated

Per Mile Damage
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Resilience Criteria: Urban

System damage more of
@
2 - -
g" a driver when network if
© 600
>
B more compact
oy — :
O 400 = ;
£ 2 4000
S 300 o
£ o 2000
a zog .
O
Per Mile Damage T Critical Load Met
Per Mile Damage imcalSeaaihie
? -
8 50 - %
g 40 g 24
I 22
G
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14 /)
"] 3 W
= B S o e g
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Chance Constraints

Assess risk vs. cost

@
3 tradeoff
>
2 o "
5 £
ey = 44
© &
g O os
E
2 !
o) 4
Per Mile Damage Epsilon 10 Epsilon
Per Mile Damage
g
§ 50 §
3 © 70~
B g
© L 6|
% 40 - (D
» @ 50
B { g
E 30 H g 40
'S 254 : 8 30+
E 20y i g 20
£ 15 - o
é 1 0 8 1g>
[S
-
Z
Per Mile Damage Enslon . Epsilon
Per Mile Damage
» Los Alamos
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System interaction via MIST

. — SEIE]
| imisT |+ | .
S—/ ¥ localhost:9000/app# c ‘ Ig- Google p‘ B 3 A O Cr|t|CaI Load

|2 Most Visted { | Getting Started | | drivelT - webcam | | Electronic Software Di.. | | Suggested Sites | | Timeand Labor [ Travel (Concur) | | Web Sice Galery »

Generation

—  Damaged Lines

—— Hardened Lines

—  NEew Lines

—  Unbuilt New Lines

Switches
NATIONAL LABORATORY UNCLASSIFIED
EST.1943
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Future Work

Reference

E. Yamangil, R. Bent, S. Backhaus. Optimal Resilient Distribution Grid Design Under
Stochastic Events, AAAI 2015

Generalizations
«  Multi-Commodity Flow Relaxation

— Voltage and Reactive power are ignored.
— Initial network is voltage feasible, upgrades tend to move loads closer to
generation, which improves voltage and lowers line flows
— May not always hold
* No good/L-shaped cuts

» DistFlow formulation — derive a linearization of 3 phase formulation
— Gan and Low 2014

« Larger networks
— Graph-based decompositions

A
> L?s Alamos
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EST.1943
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Algorithm Enhancements (example)

802 806

802 806

802 806

0.9

» Los Alamos
NATIONAL LABORATORY
EST.1943
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834 860 g3 0.89
858 . . . . 840
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Algorithm Enhancements (example)

802 806

0.99

800

. . 802 806
Substation 00 '

800

802 806

846
844

842

808 812 814

0%6 *

834 860

/
. 0 -
/ 832 g—c—o
! 888 890
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8
0.97 ! )
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b L 0.93
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» Los Alamos
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Algorithm Enhancements (example)

0.89¢ 848
Oa?ézg @ 846
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9820« ¢ 844
j S
8
! 9818 Y o esd
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0.9 802 806 808 812 814 850 r’ 824 826 S 834 860 836 (],8%40
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810
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!
! 0.93
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Algorithm Enhancements
A. Cutting plane algorithm

1. Solve the MILP based on the decomposition approaches. Let T; be a radial
network satisfying a scenario.

2. Solve the scenario base topology (T;) using a power flow solver (i.e.
GridLab-D) to obtain the voltage and reactive power profile.

3. If the voltage profile and line limits are within the prescribed bounds, the
MILP solutions satisfies the 3-phase AC power flow equations. Else,
augment the MILP with the following “no good” cut:

Disclaimer: Stronger cuts can be
Z < (|T1| — 1) derived when the details of the

underlying power flow equations are
€Ty known

where |T;| represents the number of edges in T}

B. Strengthening the power flow model

» Los Alamos

NATIONAL LABORATORY UNCLASSIFIED
ST.1943
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Long Term: Incorporate restoration

Updated System < Network Design <
Model Optimization
Response
Optimization
System Fragility i Damaged N . 3 Restoration > Compute
Model Model System Model Operations and Recovery Metrics

I /
/
/

: I ——=Pacific Northwest Storm '0§
Major Outage Events —Hurr. Ike '08

Percentage of Total ' I —\éVinter gtorm H
pring Storm '
I ——Hurr. Irene '"11
I e Summer Storm '12
= Sandy '12
I Winter Storm '13
Hurricane Gustav '08
/ ====Sandy No'easter '12
Hurricane Charley '04
/ Hurricane Frances '04
\ Hurricane Ivan '04
Hurricane Jeanne '04
Hurricane lsaac
emmmR epresentative Distribution

Utility
Priorities

Data-Driven
Damage Model

Base
Model

4

0.8

0.6 1

0.4

0.2 1
» Los Alamos
NATIONAL LABORATORY
EST.1943 0
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Source: Department of Energy, Office of Electrcity Delivery and Energy Reliability




Restoration

Restoration Timeline

Example: Minimize the size and duration of a

2400 2600
1

2200
1

Minimize

2000
1

black out.

Combine grid operation requirements (restore
power as quickly as possible) with transportation
requirements (routing crews on a potentially
damaged road network)

g -
Power . . .
Flow & P. van Hentenryck, C. Coffrin, and R. Bent Vehicle Routing for the Last
Mile of Power System Restoration. 17th Power Systems Computation
' T ' ' Conference ( ), August 2011, Stockholm, Sweden.
0 500 1000 1500 2000
Time
Updated System | | Network Design |
Model h Optimization
Response
/ Optimization
System | Fragility | Damaged > . .| Restoration y| Compute
Model 7|  Model "|System Model Operations "landRecovery| |  Metrics
A A
/\
. Al .
NAQOSNAL u' Data-Driven

EST.1

Operated by |

Base Event
Model Distribution

Damage Model

Utility
Priorities
@S
YSE


http://www.pscc2011.net/

Restoration (only) Example—Applied To Transmission
Setting

>z

Initial  gEdeh e B

Outage = =~ = 2o -
Area N

EP Restoration
Bus
EP Restoration Generator
Bus Capacitor R
Generator Transmission Line : 3 e
Capacitor Transformer e
Transmission Line Service Area: S )
Transformer Percent Damage (%) \'
Service Areas 0 j
Percent Damage (%) @ 100
0 Partial | 01530 6 = 0
@& 100 .
R Restoration

>z

After 2
Weeks

Electric Power Model
Bus
Generator
Capacitor
Transmission Line
Transformer

EP Service Areas

Percent Damage (%)

» Los Alamos — o Full
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Beyond the End Goal—Resiliency Tool Suite

Presidential Policy Directive - Critical Infrastructure Security and Resilience

“The ability to prepare for and adapt to changing conditions and withstand and
recover rapidly from disruptions. Resilience includes the ability to withstand and
recover from deliberate attacks, accidents, or naturally occurring threats or

incidents.”

Decision support tool for critical
Inventory infrastructure disaster planning and
response, composed of
Cectoration Resient interconnected modules

> S Desien Today—Resilient deign to withstand
initial blow

Resiliency

End Goal— + System restoration to

capture recovery from initial blow

Restoration Emergency
Order Operations

Bevond the End Goal— = Inventory

Repair Crew and Emergency operation to
Scheduling prepare for events

» Los Alamos

NATIONAL LABORATORY
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Short Term Solar Forecasting Using Sky Imagery
and Its Applications in Control and
Optimization for a Smart Grid

LANL Winter School
Jan 15th, 2015

Andu Nguyen
Jan Kleissl

Vi ly
==

\v
UCSD SRAF

solar resource and
forecasting laboratory

| a 0
—”‘ ',_ 1
Cloud Height: 1829 m

Tlmo (PST): 10:00:00 Dec-14-2012 91 ¢ UC San Diego
& " Dept. of Mechanical and

quJJg cno

Projection of clouds using sky imagery on a feeder in San Diego city Aerospace Engineering
from our study on impacts of high PV penetration on distribution feeders. La Jolla, California, USA




Short term solar forecasting using sky imagery

Hardware

High Resolution
Camera with
Fisheye Lens |

I

N

i

|
I/

.

USI Deploved in Redlands., CA

Environment
sensor and
control board

l

\ 0

Computer
Dual core 1.8 Ghz

Intel Atom, 4GB RAM| &

SRAF: .=:5:0O)



Short term solar forecasting using sky imagery

» Basic steps 121

Cloud detection Ray tracmg Of
Cloud height direct solar beam

determination
Cloud direction and
velocity determination
Ray tracing/ Projection of
cloud to the ground based
on the Sun’s location for
irradiance forecast
Convert from irradiance
to power forecast
* Provides 15-minute forecast
every 30 seconds down to
ground resolution of 2m x 2m.

shadowmap




Short term solar forecasting using sky imagery

Rod-Blue-.Rob'o
Cloud Decision

05

SHo0ow map for S mn

Cloud Height. 1733 m

Velocity: 28 més 500

Ferecast Legend
Green Line: 1000
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15800
Black Line:
Nowcast

2000
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Red Line: .‘
S 15 mirute Forecast
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Model SDG&E feeder

» Large feeder (10 x 10 km”2) with peak load (11.12 MW) in rural area
* 1 large 2MW-PV site at the end of the feeder; Total PV: 2.3 MW peak.
1 large 2.5 MW load at the end of the feeder

Buses 2463

General Nodes 6125

Devices 4374

Length of three-phase lines 311.953 kft / 95.08 km
Conductors Length of two-phase lines 252.695 kft / 77.02 km

Length of one-phase lines 18.518 kft / 5.64 km

Substation Voltage Level 12 kY

Total Active Power 11.1225 MW
Total Reactive Power 6.5007 MVar

PV sysiem size, [kW)]

Number Of 1-Phase Loads 556

Number Of 3-Phase Loads 29

Number Of Transformers 1 (substation)

Transformers
Number Of Voltage Regulators 7

5 at 5 different

; Total Number Of Capacitor Banks
Capacitor locations

Substation Banks

Rating 4.3 MVar

r1S eder
ﬁ%} & iabm atory

Feeder A configuration with PV systems in circles




Model SDG&E feeder

» Large feeder (10 x 10 km”2) with peak load (11.12 MW) in rural area
* 1 large 2MW-PV site at the end of the feeder; Total PV: 2.3 MW peak.
e 1 large 2.5 MW load at the end of the feeder

1000

500
Buses 2463

| Nodes 6125

200 Devices 4374

Length of three-phase lines 311.953 kft / 95.08 km
Length of two-phase lines 252.695 kft / 77.02 km
Length of one-phase lines 18.518 kft / 5.64 km

Voltage Level 12 kV

Total Active Power 11.1225 MW

Total Reactive Power 6.5007 MVar

PV system size, [kW]

Number Of 1-Phase Loads 556

Number Of 3-Phase Loads 29

Number Of Transformers 1 (substation)

Number Of Voltage Regulators 7

Total Number Of Capacitor Banks 5at5 different
locations

Rating 4.3 MVar

r1S eder
Wﬁdbma{‘ow

Feeder A configuration with PV systems in circles




Impacts of high PV penetration on Dist. systems
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Impacts of high PV penetration on Dist. systems
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Impacts of high PV penetration on Dist. systems
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Comparison: With v.s. Without PV

*  With PV
Without PV

Voltage, [p.u.]

8 10 12 14 16 10 15 20
Distance [km] Time of day, [HH PST]

Voltage profile snapshot at 1300 PST Max-min voltage profile on Feeder A during the
partly cloudy day with 100% PV pen.




Comparison: With v.s. Without PV

*  With PV
Without PV

.
o
n

| « N A
Lan ‘_\/\,rf \J \/J\'.

4

Voltage [p.u.]
=]
(le]
? -—

Feeder Voltage Profile at 1:30 pm

15 20
[HH PST]

Voltage profilel & ¢ s ‘ ‘ , _ Feeder A during the
v : 100% PV pen.

No Vol-Var Contro
W/ Vol-Var Control
5 10
Distance, km




Optimization and control using PV inverters and Energy

Storage systems

min Z(J toss + @1/ power + @2Jramp viol + @3JEs cc + @3S 10 + A5 volExcursions )

) S 7 Dk B}
PpyYpy PpsYEs €1

DY, <d\(t) < DY, Vk € S,
0 < cr(0) + E YL d) <1, Vk € S,

| Power flow equations hold

n dp: 2
Jramp viol = Z [( dl;\r' ) _R%?]

4

[(P)* + (g1)* <SP, Vke CUS,
Vinin < V() € Viaxs Vke U S,

Ramp rate <10%/min

Nyr

JTQ = z |Asl = Z Z |Sr (l-l)l ’

=1 =0




UCSD Microgrid




UCSD Microgrid
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UCSD Microgrid




UCSD Microgrid

* 42 MW peak load

*3.1 MW PV

e 2.8 MW Fuel Cell

* 30 MW Natural gas plant generating 80% annual demand
e 1.8 MW / 11.2 MWh electric energy storage

» Meters 50,000 data points for power, voltage, current,
temperature, etc.

* 5 PMUs currently, and planning to install 15 more in coming year

SRAF: =500



UCSD Microgrid

[ Solar power generated

L

Sat Sun Mon Tue Wed Thu Fri
2015-01-10 2015-01-11 2015-01-12 2015-01-13 2015-01-14 2015-01-15 2015-01-16




UCSD Microgrid

UCSD Frequency and Angle

p‘;‘;‘-’" 60.003 60.003 60.003

30

25
20

15 |

59.894

59.874 59.874 |59.874
4/29/2014 5:22:43 AM & E, 7.13 minutes <> 4/29/2014 5:29:51 AM
e ™A W ML L ADOTALOTY N,



Thank you! Questions?

Frequent and
systematic
oscillations

1 1 |
10:00 11:00 12:00 13:00 14:00 15:00
Time [HH:MM]

* Food for thought: SolarCity’s 1-min data

SRAFLdso.afOWG




Contacts

o If you are interested in the videos, please contact me using my
email below and I’ll send them separately to you since some of
them are quite large in size.

* Andu Nguyen: andunguyen.ucsd@gmail.com or
andunguyen(@ucsd.edu

* You can also contact my advisor if you are interested in our work
in general. His email 1s below:

e Jan Kleissl: jkleissl@ucsd.edu

Squ:Labm orton yO


mailto:andunguyen.ucsd@gmail.com
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mailto:jkleissl@ucsd.edu

Modeling Frameworks for Future Energy Systems

GoOran Andersson
Power System Laboratory, ETH Zirich




Outline

 Introduction & Motivation
* Energy Hubs

 Power Nodes

« Other Models

* Concluding Remarks
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History of Challenges of the Power System

eeh power sysfems |
laboratery 3



The First Challenge of Electric Power Engineering
1880 — 1920: To make it work

eeh power sysfems LN | 4
ltabaratery



The Second Challenge of Electric Power Engineering
1920 — 1990: To make it big

eeh power sysfems | 5
laboratory



To make it big (1000 kV, China 2008




The Third Challenge of Electric Power Engineering
1990 - : To make it sustainable

4

EAI/MESSAGE BUS

eeh power systems | 7
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About Planning the Future

= “Plans are useless, but planning is indispensable.”

Dwight D. Eisenhower

eeh power systems | 8
ltabaratery



Complexity of Power Systems

Complexity along several dimensions

= Time

= Space

= Hierarchy

Power
A

Primary Secondary

30s 15min

eeh::r
laboratery

(milli)seconds (e.g. frequency inertia, frequency&voltage control),
minutes (e.g. secondary/tertiary frequency&voltage control),
hours/days (e.g. spot market-based plant/storage scheduling),
months/years (e.g. seasonal storage, infrastructure planning).

1'‘000+ km, e.g. interconnected continental European grid
(Portugal — Poland: 3'600 km, Denmark — Sicily: 3000 km).

from distribution grid (e.g. 120/240V, 10 kV) to
high-voltage transmission grid (220/380/500/... kV, AC and DC).

Interconnected.
network of
ENTSO-E

Color Key:

Black: Generation
Blue: Transmission
Green: Distribution

Tertiary

Transmission lines
765, 500, 345, 230, and 138 kV

Substation

Step Down Subtransmission
Transformer &) Customer
—~ 26KV and 69kV

Generating Station / Lﬂr‘[m

G i Transmission Customer

enerating 138KV or 230kV
Step Up

Transformer

=

=6H0min [ime

Primary Customer
,d """ 13kV and 4kV

Secondary Customer
120V and 240V

ol




The grid frequency — A key indicator of the state of the system

50.02

f [Hz]

50.01

50.00 h
49.99

f - Setpoint

.

49.98

49.97

49.96 -

49.95

L PP - Outage

49.94

49.93

49.92

49.91

49.90

49.89

PS Oscillation

20 mHz

5s

[

Y

%2:40 16:53:45//

49.88
16:45:00

16:50:00

= Frequency Mettlen, Switzerland

= Frequency Athens

eeh::r
laboratery

16:55:00

17:00:00
8. Dezember 2004

17:05:00

17:10:00

17:15:00

Source: W. Sattinger, Swissgrid

| 10



w

Spectrum of the system frequency and the AGC signal

g
w

Magnitude of
system frequency [mHz]

i

Frequency spectrum of system frequency [Hz]

-5 -4
10 10

/] day 1 hour
¥

10 min

7.5 min

Ll gs

5 min

|y

-2

10

10

Magnitude of
AGC signal [%]

Frequency spectrum of AGC signal [Hz]

30 min

1 hour\ \ 20 min

//10 min

Spectrum of the system frequency and the AGC signal

Source: A new frequency control reserve framework based on energy-constrained units
(Borsche, Ulbig, Andersson, PSCC 2014)




Trends and Challenges

Increasing fluctuating RES deployment = Fluctuating power in-feed

= Germany 2012: 63.9 GW power capacity = 75% of fully dispatchable fossil generation.
(Wind+PV) 77.1 TWh energy produced = 15.2% of final electricity consumption.

=  Wind+PV: Still mostly uncontrolled power feed-in — Hydro: «well»-predictable power feed-in.

Mitigation Options

= Improvement of Controllability: Implementation of Wind/PV curtailment in some countries.
= Improvement of Observability: More measurements and better predictions of PV and
wind power feed-in (state estimation & prediction).
5:10‘ : i i i i i i : : : 9xm‘ . i i i i i
—yre Power Instaled Capacity [iIn GW] (2012-16 values w— ydre Energy In-Feed [in TWh] (201216 values
.sl—&“fnlt.?‘.i?éf;?.ﬂ*ﬁn“éfﬁ‘.lzﬁf;f:.f:::;ﬁi.,"::}"’ . J—&“&iﬁ;‘f.’:::’:ﬁ'i‘méz?;.ﬁ?f,ﬁ?:r;:::’.‘“

4=

Ppv > Puwing

EWind > EHydro

1.5~

I:)Wind = I:)Hydro

055

E

O\ |
7 U EPV =

o & 1 L L L 1 L 0 L L L L = L 1 L L
1990 1982 1894 1586 1993 2000 2002 2004 2006 2008 A0 02 2014 016 1990 1982 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Hydro

Sources: BaSt 2012, IEA Electricity Information 2011, BMU AGEE 2013, own calculations
eeh::>— | 12



PRESENT & FUTURE — high RES shares & Smart Grid Vision
(DE capacity values of year 2011)

Coal Nuclear Hydro Biomass
Fully . Time-
dispatchable V'/ff var-.RES varying
~60% of all eratic Generation [+/-] | dispatchable
generation ~40% of all
generation
Hydro Storage,
Batteries, Flywheels, Power
Flow
Control
(incl.
Soon >10% of peak load FACTS)
No strict borderline
————- ==»  controllable Loads [+/—]
non-controllable Loads (price-responsiveness: Demand Response)
(control signal-driven: Demand Side Participation)

Increase of controllable loads
[+/-]: Power regulation up/down possible.  (faster response times, automatic control)

eeh:;:z | | 14



Energy Hubs

= ETH Zurich: Michele Arnold, Martin Geidl, Florian Kienzle,
Gaudenz Koeppel, Thilo Krause, ...

= University of Michigan: Mads Almassalkhi, lan Hiskens

eeh::n | 15



Overall
Performance

A

Backcasting

*-.... — — e —, .
- Greenfield
"Optimal" 4
Approach
[
l -
‘ r -.E-E;-ri.dging [ !
! —f Sys‘lrem?._r________..----"" I
- ]
/
£
/
/J
"Sub- —TT— _
optimal" .
Forecast
I I P Time
Today Future

eeh:::;
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The Energy Hub — A Key Element

Energy Hub

Electricity = :  Electricity

Ny : >

2 :
Natural Gas '(I' :

Inputs - ; Outputs
_ District Heat l . Heating R (Loads)
!
WoodCips | [ | - @___933229__+
¢ [

.....................................................................

eeh::n | 10



Modeling the Energy Hub

o o
R S
input energy output energy
carriers ENERGY HUB carriers
a, B, ...C o, B, ...C
C c
S S >
- T Mg
Pout Coa CBU CQOL Pin
p p
Pou | _ | Cap Cpp e || Ba
G cee 4
Pl [Car Cae Cee || P
output power vector coupling matrix input power vector

eeh::n | 20



I

Motivation for Energy Hub Modelling

= Conversion between different energy carriers, e.g. natural gas
Into electricity and heat, establishes input-output coupling of
power (and energy) flows.

ENERGY HUB

. . Conversion Matrix C
electricity i electnicity
» - : »
L+M=C [ P-Q }
natural gas < =
___'?_.JI I
]
district heat | : heat
TR J\f"*"";""" L = Loads (Output)
P{I = - LO: e ] 7
, : M = Output side storage flows
Pg Lg o . .
PR . L —=» S C = Coupling matrix
Py i B . converter
— converler - S bl
e e : assemply P = Input power tlows
P“i._; P _JEL” Q = Input storage flows

eeh:;:z | | 21



- Power conversion <> price conversion

ENERGY HUB

P, v,

-
Ll

P
Y=AC

A

o?

A&

o

L., A

¢ e

\\ Pé" '7[/.9

system marginal
prices

eeh::r
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L

L=CP
A

/,

hub marginal

prices
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I

Modeling of Energy Networks — Energy Hubs

= Energy Hub concept allows unified modelling of energy networks and
resulting synergies of electricity networks (P, E,|), natural gas networks (P

7 gas’
E,.s) and district heat networks (Ppq.¢, Epear)
= Energy Hub concept allows analysis and optimization of investment
optimality, operation efficiency and operation reliability.
Heat producer r _________ R 4 _______ 4. ______ T Heat consumer
' Heat ' l El .y N
. storage - o 5 il “—71— Power plant - \
i : EE e . _ - .I; €2 \
_— Eslﬁjig;:;al E % | ——+ Electrical consumer :__E L.
interconnect_pr e i é L 5 ff-.-_d’ b b
_ _‘_', i T ¢ : Energy interconnector B _/,/
| Kinetic [+ s E :
. energy | | - z /|2 5
; storage % % _‘::_E Mixed consumers
' Chemica - i ﬁ
. storage o :
Gas producer 777777777 1F$"""?r 777777 ., Gas consumer
l- — Heat
4 —» Electrical energy
[ Chesmcal siealy Geidl, Andersson et al., 2007 and 2008
eeh::>— | | 25



= Multi-period Optimal Dispatch (MPOD) of hub systems

= Minimize energy costs in system
= Also includes penalty on load control and wind curtailment
= Subject to
= Energy hub flows, limits on hub elements
= Hub storage integrator dynamics, limits on storage devices
= Physics of power flow, limits on network elements
= Forecasted energy demand, fuel costs, and renewable

= Solution represents optimal energy schedule over MP horizon

= Similar to economic dispatch in electric power systems
= Energy storage enforces tighter coupling between time-steps

eeh::; | 26



= HUBERT- automated simulation of arbitrarily large hub
systems

System Setup
(Matlab)
1 3 ra
d{1,2) e(2,.45,.35)
d(2,2) ©(1,0.9)
dfi. 1y cofl,08.8)
Energy Hub
; Flows
LT
LX)
- Network Flow
- Balance
BT gerarolsy el e sy (orge el of sped APy Wl ER e oalle uﬂﬂﬂﬁzﬂ&
B | il D) i%,0.09) Power Flows

[
| b, T )
i B}
| i B T )

MNetwork

From Mads Almassalkhi
eeh:;:z | | 28



Some Applications

e Long term energy planning of the city of Bern

* Energy planning of several Swiss municipalities

* Analysis of e-mobility

* Energy/Exergy analysis of cities of Zurich and Geneva
e Long term energy network expansion in Europe

* Energy efficiency studies of airports, harbours, etc In
Europe (EPICAP)

| 29
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Hub loads [p.u.]

fﬁ [p.UJ

EZ [pu]

Influence of Prediction Horizon

Ez [p.u]

Total operation costs [m.u.]

» Operation of heat storage dependent on heat
load and CHP operation

4500

4450/

4400

4350

4300

4250

5 10 5 20 2
Length of prediction horizon N

Computation time [5_ec]

Computational Effort

5 10 15 20
Length of prediction horizon N

| | 38
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Energy hub optimization

« Simulating large multi-energy systems
 Example: 102 energy hubs,

 electric + natural gas networks & wind farms + heating loads

« 10° Cumulative Cost of Supplying Demand

2:5 C_IWith Storage .
_\Vil-ll:()llT- St..m"r:\;e; : Econ0m|c
A | benefits of
_ storage
Break-even time il
- >
12 16 20 24

Time Interval (hr.)

Time (hr.) From Mads Almassalkhi
eeh::; | | 40



Power Nodes Framework

Kal Heussen (DTU)
Stephan Koch
Andreas Ulbig

| 41

eeh::r
laboratery



Power Node Modeling Approach

Demand/Supply- /\ Grid-side
side capacity C
provided energy | Jevel g<x <1
(water, wind, fuel...) I - ‘
£>0 B
demanded energy £
(heag ligrtn)t, ) MhoadUioad Uload
<
.1u ]
spilled energy (5 | Hoer
(wind, water,...) w I
w>0 —@ I
unserved load |
w<0 conversion
storage process &

O
.
|

eeh::r
laboratery

losses

-1
77Ioadi l"Iloadi - ngeni ugeni

losses

State-Descriptor Form

CsociX;
T
=a;x;+b; u

+6 —W, —V,

| 43



I Power Node Modeling Approach I

Demand/Supply- //_\ Grid-side
side capacity C
provided energy oveldexz1 State-Descriptor Form
(water, wind, fuel...) - *
§> 0 e — C .x .
demanded energy —? - SOC,i*i .
(heat, light, ...) loadY/oad Ujoad _
Storage £<0 - =a;x; +b; u
capac | ty spilled energy TTgen Ugon | Ugen Internal sto rage
x R I | losses v(X)
state-of-charge U"eenvedioad |
w<0 conversion _
(SOC) storage rocess & Shedding term
g p g
Power feed-out losses losses

from grid

eeh::— .. .
Efficiency factors

Power feed-in to grid

Provided / demanded powér



Examples of Power Node Definitions

Combined Heat/ Power Plant(CHP), Berlin-Mitte

Fully dispatchable generation
No load, no storage (C)
Fuel: natural gas (&>0)

-1
T7gen, Ugen, = Si
gen; —'gen; i
eeh:;:z

Offshore Wind Farm, Denmark

= Time-dependent dispatchable
generation, if wind blows, &>0,
and if energy waste term w>0

= No load, no storage (C)
= Fuel: wind power (£>0)

1 .
ngeniugeni — gi — W,

| | 45



Examples of Power Node Definitions

Time-dependent dispatchable load = Dispatchable generation & load

(heating element) = Battery storage (C = 10-20 kwWh), very small
Constrained "storage” (C= 10 kWh) losses (v =0)

Demand: hot water, daily pattern (£ <0), Demand: driving profile (¢(<0), EV: (w=0)
internal heat loss (v > 0) = PHEV: Substitute electricity by fuel (w > 0)

Cuidingieniv: CiXi = Moag, Yioag, + 6i

Ci Xi — 77|08.di uloadi + gi o Vi Full V2G Support: Ci).(i = nloadiuloadi _ng_elniugeni +§i _Wi
eemn:..:..; [ | 46



Examples of Power Node Definitions

Goldisthal Hydro Pumped Storage, Germany Emossion Storage Lake, Switzerland

= Fully dispatchable generation (turbine) = Fully dispatchable generation
and load (pump) (turbine), but no load (pump)
= Constrained storage (C = 8 GWh) = Large storage (C = 1000 GWh)
= Fuel: almost no water influx (£=0) = Fuel supply: rain, snow melting (&>0)
. -1 . -1
Ci X = nloadiuloadi _Ugeniugeni CiXi = _Ugeniugeni +§i

eeh:;:; | 47



Examples of Power Node Definitions

General formulation:

) o L Lo h
‘— Krattwaerk Lattan Regqlierhereich bflussmenge: 200 m¥/s
\ s Bad Oberar Letten 406.20 i !
406.00 ===
Dachwehr
£ e 405.80 P » / H
y s | Abflussmenge: 50 m#/:
405.60 | }
Hauptbehnhol —= \_/’ — Absenkungsgrenze
405.40 I L
// Monat J FM A MJ J A S O ND
/)
Fagulianvahr ¥ ;
Schanzeng =i, ¥
3 -
l %,, ¥ T ¥ - D
A a’@%«9@‘ S e J-’- = i o b £

Dispatchable generation, but no load

Storage function dependent on
geography, C¢|[0, ..., GWh, TWh]

Fuel (&): water influx from river, (&>0)
Waste (w): water flow over barrage (high
water-level) or intentional water diversion

VI -1 water inflow
CiX = —T14en Ugen, + 6

eeh::r
laboratery

gen;

: 1
Ci X = nloadiuloadi _ngeniugeni + §i —W =V,

Hydro Cascade — one stage ”Ioadi '

uloadi

Dispatchable generation and load
Constrained storage (C = GWh range)

Fuel (& ,): water influx from upper
basin and other inflows (¢;-,)

Waste (w): water discharge into lower
basin (or river)
Loss (v): evaporation from bassin

: 1
CiXi = nloadiuloadi _ngeniugeni +Z§i,k —W, =V
k

| | 48



I Power Nodes Simulations — I

min .J (k)

s.t.

(b)
(c)
(d)
(e)
()
(2)
(h)
(1)
(1)
(k)

(a-k)

Predictive Power Dispatch

I=k+N-1

Z (I(I’) — -"f-rref)T ' Q:I‘ ' (I(E) o ‘;I".T'Ef)

=k
+u()T - Qu - u(l) + Ry - u(l)
+ou(D)T - 6Qy - du(l)
x(l+1)=A -x(l)+ B - u(l)
0 < pmn < x(l) < 2™m* <1
0 < o™ < () < u™a
Su™™ < du(l) < du™**
(1) = ‘gd-m-‘,l(‘r' -T)
§2(1) = Larv2(L- T
&3(l) = &aro3(l- 1)
Er(l) = Earo7(L-T)
Ugen,a(l) - Upoada(l) =0
Ugen 5(1) = Uoads(l) =0

> gy =Y
i={2,3,4,5,6}
Vi=Ak,..., kF+ N —1}

i={1,4,5.7}

Unit Commitment (UC) or Optimal
Power Flow (OPF) including energy
storage units

Demand and RES power in-feed
forecasts (perfect or imperfect)

Optimisation based on marginal
generation costs (+ ramping costs)

UC: Copperplate simplification
OPF: Grid constraints included

In addition: Representation of
transmission and distribution grid
constraints (line capacity, voltage)

Implementation: Matlab, Yalmip

Uload,i([) =0

| 49



Verification of the Power Node approach, 1

BFE electricity dispatch in Power Nodes electricity dispatch in
Switzerland Switzerland
5.4% 4.6%
‘ 24.2% ‘ 24.9%
m Hydro Reservoir
Run of River
Nuclear
38.1% 38.5% m Conv. Thermal &
Other RE
32.3% 33.4%

Figure 10 — BFE measurements [18] vs Power node dispatch in Switzerland in 2010.

Source: Swiss energy strategy 2050 and the consequences for electricity grid operation — full report
(Comaty, Ulbig, Andersson, ETH 2014)

eeh::>— | 50



Verification of the Power Node approach, 2

swissgrid Import/Export Patterns Power Nodes Import/Export Patterns
Switzerland’s balance in 2010 [MWV] Switzerland's balance in2010 [MW]

50 M I 50 ;.'i.":”

40} 40§
_ 14000
* 30 30 14000
> 12000 2
it @ 12000
= 20 = 20

10 08

@O(\b &"\’& Ep‘t‘&b ,Q;\‘:'@ 4,({@-" c_;’?}s\b @}Qb A@F‘S ,c\\ﬁda &Q& &,ﬂ\\b‘% <& g,;i\.&b P
&

Figure 11 — Power Exchange Comparison between swissgrid Measurements and Power Node
Dispatch.

Power Node approach: Import 30.2 TWh,/a

BfE statistics: Import 32.9 TWh,/a Export 36.6 TWh./a

Export 30.9 TWh_/a

Source: Swiss energy strategy 2050 and the consequences for electricity grid operation — full report
(Comaty, Ulbig, Andersson, ETH 2014)
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Predictive Power Dispatch (Case Study Germany)

= Simulation Period May 2010 (30% Wind, 50% PV, no DSP)

- ngh Temporal Resolution T,y =72h, T,

=" Calculation Time = 1min.

0

P [Mw]

-0.5

’ Wind or PV Power Infeed

2 3

4

5

Curtailment of

6

7

8

[}

a.= 40, Tampie= 1omin.

al W 'N'w

Storage saturatlon

15 16 17 18 19 24 25 26

e curtailed power {(wixi)

26

T (T T

qu PV

- ugcn,cml v

27

- ugm1,Pumpﬂ:dHydm
- Woad Load

u 3 rdr
- load PumpedHydro

XPmnpcdHydm

rel. Wioad

rel. W\Vind
rel. wy,,
+ Storage saturated
- I |
28 29 30 31

53



Assessment of Flexibility —
Curtailed Renewable Energy in Germany

0-50% Wind Energy, 0-50% PV Energy, Full-Year 2011 simulations

only existing hydro storage, copperplate grid model, no export, no DSP
50 70

65

60

55

. _50

_...._45

30

- _40

- 35

... 30

20

. _25

wind Power erloyment
(AB1au3 S3Y 8|qge|reAe 2101 JO % ul)

10

15 20 25 30 35
PV Power Deployment

AGisu3z s3Y pajrenn)d



I Assessment of Flexibility — I

Curtailed Renewable Energy in Germany

20% Wind Energy, 10% PV Energy (EU-NREAP Goals), Full-Year 2011 simulations
only existing hydro storage, copperplate grid model, no export, no DSP

Curtailed RES Energy
(in % of total available RES Energy)

eeh::r
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30 I \ T 1 1 I I I I
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Why is a predictive dispatch optimization necessary?

= Strong impact of prediction horizon length (T,) on dispatch performance visible.

= Example German power system (with varying wind/PV energy shares).

= Simulation parameters full-year 2010, 15min sampling time, artificial pumped hydro
storage capacity of 50x nominal values (7GW/42 GWh nominal power/energy)

= Full-year simulations of 25 setups with varying wind/PV share

T, =1h w T, = 12h w T, = 24h

Figure description
— X-axis: [0, 5, 10, ..., 50%] of PV energy share of total yearly load demand.
—y-axis: [0, 5, 10, ..., 50%] of wind energy share of total yearly load demand.
— color coding: Curtailment of Wind&PV energy (dark blue: =0%, dark red: =50%).
I
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A Comment on Volatility

Change of Load Flow Patterns
in European Power System

Wonh to South / Sowh to Motk Weekly NTC Power Flows in selected EL countries: RES 2010 on EPS of 2010
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Other Models

= Cyber-Physical Models of Power Systems

Daniel Kirschen & Francois Bouffard,
IEEE Energy & Power Magazine, 2009

[ |

Abnormal State

Informationally <:] Combined Abnormal
Abnormal State ':_> State
C

figure 2. Expanded power system security analysis framework.
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Some Conclusions (1)

= The challenges of integrating renewables are manifold but — in principal —
managable.

=  Accurate modeling, simulation and analysis tools necessary for studying power
systems and derive adaptation strategies from such decision support tools.

= Hard Paths — Solve problems simply by oversizing everything.
(= oversized, expensive, inefficiently operated power system)

=  Soft Paths — Solve problems via more control & optimal operation.
(= right sized, less expensive, efficiently operated power system)

Control Based Expansion

=  Computation and communication is cheap (and getting cheaper),
(physical grid investments are expensive)

= Also other challenges (power markets, consumption growth, ...)
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Building an Energy System is a Team Work

-

B _." o -' \ |: _

- Y
power sysfems
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A general reflection on research

Tomas Transtromer
Nobel Prize Laureate in Literature 2011

Det finns | skogen en ovantad glanta
som bara kan hittas av den som gatt vilse.

In the middle of the forest there is an unexpected glade
that can only be found by someone who is lost.
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